CORRELATION OF MULTIPHASE EQUILIBRIA FOR ASYMMETRIC MIXTURES BY A UNIFIED MODEL

XI-YIN Zheng, NAI-WEN ZHANG, GUANG-WEN WU, WEI WANG AND XUE DONG

Department of Chemical Engineering, Dalian University of Technology, Dalian 116012,
People's Republic of China

Key Words: Phase Equilibrium, Multiphase Equilibrium, Asymmetric Mixture, EOS, High Pressure, Local Composition, Mixing Rule

The simple DDLC-EOS unified model proposed in the previous paper was extended to describe the multiphase equilibrium behavior of highly asymmetric mixtures.

Liquid-liquid equilibrium data of 25 binary and 5 ternary systems as well as vapor-liquid-liquid equilibrium data of five binary systems were correlated with this model and the Soave-Redlich-Kwong equation.

Results show that for systems consisting of associating substances, fitting accuracies of the proposed model have been significantly improved.

For systems of alkanes or alkylbenzenes with carbon dioxide or ethane as a common component, the average deviations of this model were also found to be lower than those of the conventional method with either temperature-independent or temperature-dependent binary interaction parameters.

Introduction

Studies of high-pressure phase behavior have penetrated several fields of industrial application, such as the enhanced-oil-recovery (EOR) process, coal gasification and liquefaction, supercritical fluid extraction and biochemical technology. Special attention has recently been focused on the multiphase equilibrium behavior of homologous series of heavy hydrocarbons with carbon dioxide or light hydrocarbons as a common component.

These mixtures are important constituent binaries of the crude oil usually encountered in the EOR process. However, carbon dioxide and heavy hydrocarbons differ widely in molecular size and chemical nature. The former is known to be partially miscible with all normal alkanes from heptane up to the higher molecular-weight ones lower than heneicosane.

An adequate thermodynamic model is of prime importance for describing the partially miscible behavior of these highly asymmetric mixtures, both for design purposes and for promoting insight to a better understanding of immiscibility phenomena.

However, it appears that the conventional cubic equation of state is not usually capable of correlating such multiphase behavior. Both the Patel-Teja and Peng-Robinson equations of state were found to be very poor in correlating LLE behavior with conventional mixing rules.5)

Several authors10,11,23) have attempted with some success to introduce the density-dependent local-composition concept into the mixing rule of the cubic equation of state. This introduction has greatly extended the applicability of the EOS model to more complex mixtures and provides the possibility of using a single model for all equilibrium phases.

In this paper, LLE data of 25 binary and five ternary systems, and VLLE data of five binary systems were
correlated by applying the proposed model and the Soave-Redlich-Kwong equation of state to test their applicabilities. In comparison with the conventional method, better results were obtained by this model with either temperature-independent or temperature-dependent binary interaction parameters.

1. Simple DDLC-EOS Unified Model

The proposed model is similar in formulation with the ordinary equation of state:

\[P = RT/(v - b) - a/v(v + b) \]

(1)

The attractive parameter of a mixture may be expressed as a function of temperature, density and composition:

\[a = \sum x_i \sum x_j a''_{ij} (1 - C_{ji} E_{ji} / \sum x_k E_{ki}) \]

(2)

where

\[C_{ii} = C_{jj} = 0 \]

The pair-attractive parameter \(a''_{ij} \) in the conformal reference state can be calculated by the conventional combining rule:

\[a''_{ij} = (\alpha_i \alpha_j \rho_i \rho_j)^{0.5} \]

(3)

The attractive parameter of pure component \(i \) at its critical point, \(\alpha_i, \rho_i \) and its temperature correction factor \(\alpha_i \) are similar to those of the SRK equation.

The nonconformal parameter \(E_{ji} \) is defined as

\[E_{ji} = \exp[-C_{ji} a''_{ij} \ln(1 + b/v)/RTb] \]

(4)

\(E_{ji} \) values may be considered as a measure of local-composition effects. At the low density limit, Eq. (2) reduces to the conventional quadratic mixing rule with one binary interaction parameter while \(E_{ji} \) approaches unity. For LLE and VLLE, since local-composition effects in both liquid phases cannot be neglected, values of \(E_{ji} \) are expected to depart from unity. Especially for nonpolar asymmetric mixtures, \(E_{ji} \) deviates significantly from unity with increasing pressure as was shown elsewhere. Calculated results of all systems investigated demonstrate these local-composition effects.

2. Correlation Procedure

The criteria of multiphase equilibria among all existing phases are the equalities of temperature, pressure and fugacity of each component in every phase.

\[f^1 = f^2 = f^3 \]

(5)

If the fugacity is expressed in terms of the fugacity coefficient \(\phi_i \), Eq. (5) becomes:

\[\phi^1_i x_i = \phi^2_i x^2_i = \phi^3_i y_i \]

(6)

The above equation provides a direct method for multiphase equilibrium calculations in case we have an equation of state which is capable of accurately describing limited miscibility phenomena. The fugacity coefficient of component \(i \) for the proposed model can be found in the Appendix of reference 22. The compressibility factor \(Z \) should be calculated by Eqs. (1) and (2), while \(a''_{ij} \) by Eq. (3).

Eq. (6) may be applied to solve for the equilibrium compositions of all phases at a given temperature and pressure. The regression analysis required for determining the binary interaction parameters \(C_{ji} \) is to solve a set of nonlinear functions. The Simplex method of Nelder and Mead needs no differentiation procedure and has no convergence problems with arbitrary initial values. So it was applied to obtain the optimal parameters and the deviations between the experimental and calculated values with the following objective function:

\[OF = \sum_j [x^1_{1,exp} - x^1_{1,cal}]^2 + (x^2_{1,exp} - x^2_{1,cal})^2 + (v^1_{1,exp} - v^1_{1,cal})^2 \]

(7)

However, the vapor compositions calculated for both liquid phases must be confirmed to be identical in order to avoid trivial solutions.

3. Temperature-Dependence of Binary Parameters

It is known that temperature-independent binary parameters usually overestimate the two-liquid phase near the critical region. Since we assumed that the binary parameter \(C_{ji} \) was proportional to the coordination number \(x_i \), which could be derived as a function of temperature, density and composition, it would be interesting to investigate the temperature-dependence of these parameters.

We calculated \(C_{ji} \) for each datum point by an exact fit to the equilibrium compositions of two liquid phases at corresponding temperature and pressure. The \(C_{ji} \) values obtained were found to be different from point to point in several systems. As an example, when plotted against temperatures, they exhibit approximately a straight line as shown in Fig. 1 for the carbon dioxide-nonylbenzene system, where \(k_{12} \) values of the SRK equation were also plotted.

It is evident that both \(C_{21} \) and \(C_{12} \) decrease steadily with increasing temperature, while \(k_{12} \) exhibits only a minor decrease over a temperature range of 40 K. This indicates that the conventional mixing rule cannot yield good results for such highly asymmetric mixtures.

From Fig. 1 we may expect the binary parameters to be a linear function of temperature.

For the SRK equation:

\[k_{12} = a + bT \]
Table 1. Correlation of liquid-liquid equilibria for binary asymmetric Mixtures

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>C12</td>
<td>255.16 - 278.95</td>
<td>2.076 - 3.933</td>
<td>14</td>
<td>0.108</td>
<td>3.55</td>
<td>1.82</td>
</tr>
<tr>
<td></td>
<td>C13</td>
<td>(UCST)</td>
<td></td>
<td></td>
<td>a=0.075</td>
<td>b=0.098</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C12</td>
<td>311.21 - 313.91</td>
<td>8.192 - 8.692</td>
<td>12</td>
<td>0.100</td>
<td>0.41</td>
<td>1.16</td>
</tr>
<tr>
<td>2</td>
<td>C12</td>
<td>233.77 - 309.28</td>
<td>1.027 - 8.006</td>
<td>27</td>
<td>a=0.097</td>
<td>b=0.252</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C12</td>
<td>(LST)</td>
<td></td>
<td></td>
<td>d=1.233</td>
<td>f=0.727</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>C12</td>
<td>275.62 - 302.35</td>
<td>3.709 - 7.062</td>
<td>21</td>
<td>a=0.105</td>
<td>b=0.400</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C12</td>
<td>(PST)</td>
<td></td>
<td></td>
<td>d=0.723</td>
<td>f=1.169</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>C12</td>
<td>267.50 - 309.57</td>
<td>2.026 - 5.176</td>
<td>5</td>
<td>0.009</td>
<td>14.59</td>
<td>12.01</td>
</tr>
<tr>
<td>5</td>
<td>C12</td>
<td>298.20 - 6.420</td>
<td></td>
<td>4</td>
<td>-0.1057</td>
<td>1.16</td>
<td>1.64</td>
</tr>
</tbody>
</table>

Average
3.04 2.99 0.72 0.74

\[
\Delta x_1^c = \left\{ \sum_{i} \left(x_{1,exp}^i - x_{1,sol}^i \right)^2 / m \right\}^{0.5},
\Delta x_1^a = \left\{ \sum_{j} \left(x_{1,exp}^j - x_{1,sol}^j \right)^2 / m \right\}^{0.5}
\]

SRK: \(k_{12} = a + b \times 10^{-3} t \) °C, DDLC-SRK: \(C_{12} = c + d \times 10^{-3} t \) °C, \(C_{21} = e + f \times 10^{-3} t \) °C

Fig. 1. Temperature-Dependence of Binary Interaction Parameters for the Carbon Dioxide-Nonylbenzene System

For the DDLC-EOS model:

\(C_{12} = c + dT \)

\(C_{21} = e + fT \)

If we incorporate this temperature dependence of binary parameters into the regression procedure, much better agreement of calculated results with experimental values are achieved in comparison with the SRK equation of state with temperature-dependent parameters.

4. Calculated Results

4.1 Binary liquid-liquid equilibria

The 25 binary systems tested in this investigation may be classified into four groups: carbon dioxide–alkane, carbon dioxide–alkylbenzene, ethane–alkane and others. Critical constants of alkylbenzenes were taken from the API Technical Data Book.\(^1\) Some of theiracentric factors were estimated by the Edminster method.\(^2\) The critical properties andacentric factors of all other compounds were obtained from Reid et al.\(^{15}\)

Other typical examples are presented in Table 1. From a total of 331 datum points, the average standard deviations of the proposed model are
Table 2. Correlation of ternary liquid-liquid equilibria for alcohol aqueous mixtures

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>$\Delta x^1 \times 100$</td>
<td>$\Delta x^II \times 100$</td>
<td></td>
</tr>
<tr>
<td>Carbon dioxide (1) + Ethanol (2) + Water (3)</td>
<td>304.2</td>
<td>6.78–</td>
<td>6.99</td>
<td>Nonconvergence</td>
<td>0.37</td>
</tr>
<tr>
<td>1,1-DFE (1) + Ethanol (2) + Water (3)</td>
<td>323.2</td>
<td>1.32</td>
<td>1.05</td>
<td>8.88</td>
<td>0.13</td>
</tr>
<tr>
<td>1,1-DFE (1) + ν-Propanol (2) + Water (3)</td>
<td>323.2</td>
<td>1.32</td>
<td>15.83</td>
<td>3.54</td>
<td>1.41</td>
</tr>
<tr>
<td>1,1-DFE (1) + ν-Butanol (2) + Water (3)</td>
<td>323.2</td>
<td>1.32</td>
<td>19.26</td>
<td>3.83</td>
<td>1.88</td>
</tr>
<tr>
<td>1,1-DFE (1) + ν-Pentanol (2) + water (3)</td>
<td>323.2</td>
<td>6.08</td>
<td>1.56</td>
<td>0.48</td>
<td>0.90</td>
</tr>
<tr>
<td>Average*</td>
<td></td>
<td></td>
<td>5.36</td>
<td>4.46</td>
<td>1.12</td>
</tr>
</tbody>
</table>

$\Delta x^I = \left(\sum \frac{(x_{i,exp} - x_{i,cal})^2}{m} \right)^{0.5}$,

$\Delta x^II = \left(\sum \frac{(x_{i,exp}^II - x_{i,cal}^II)^2}{m} \right)^{0.5}$

* System No. 1 was excluded.

$\Delta x^1 = (\Delta x^1_1 + \Delta x^1_2 + \Delta x^1_3)/3$, $\Delta x^II = (\Delta x^II_2 + \Delta x^II_3)/3$.

Table 3. Correlation of vapor-liquid-liquid equilibria for several binary asymmetric mixtures

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ΔP</td>
<td>Δx^1</td>
<td>Δx^II</td>
</tr>
<tr>
<td>1</td>
<td>Ethane (1) + Methanol (2)</td>
<td>267.15–</td>
<td>2.03–</td>
<td>5.07</td>
<td>0.376</td>
<td>15.16</td>
</tr>
<tr>
<td>2</td>
<td>Ethane (1) + Eicosane (2)</td>
<td>307.16–</td>
<td>4.98–</td>
<td>309.56</td>
<td>4.26</td>
<td>0.012</td>
</tr>
<tr>
<td>3</td>
<td>Methane (1) + ν-Hexane (2)</td>
<td>186.23–</td>
<td>3.85–</td>
<td>4.77</td>
<td>0.065</td>
<td>1.48</td>
</tr>
<tr>
<td>4</td>
<td>Hydrogen sulfide (1) + Water (2)</td>
<td>312.04–</td>
<td>2.76–</td>
<td>371.87</td>
<td>8.62</td>
<td>0.071</td>
</tr>
<tr>
<td>5</td>
<td>Carbon dioxide (1) + Water (2)</td>
<td>298.15</td>
<td>6.41</td>
<td>0.078</td>
<td>1.38</td>
<td>0.95</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td></td>
<td>0.12</td>
<td>4.26</td>
<td>3.14</td>
</tr>
</tbody>
</table>

$\Delta P = \left(\sum \frac{(P_{exp} - P_{calc})^2}{m} \right)^{0.5}$, $\Delta y_1 = \left(\sum \frac{(y_{1,exp} - y_{1,cal})^2}{m} \right)^{0.5}$, Δx^I and Δx^II same as Table 1.

$\Delta x^I = 0.79$ and $\Delta x^II = 0.80$, while those of the SRK equation are $\Delta x^I = 0.84$ and $\Delta x^II = 1.77$ for the ten systems of carbon dioxide–alkane. For the five systems of carbon dioxide–alkylbenzene, those of the proposed model are $\Delta x^I = 0.49$ and $\Delta x^II = 0.78$, better than the $\Delta x^I = 0.64$ and $\Delta x^II = 1.21$ of the SRK equation. However, no improvements were obtained for the five systems of ethane–alkane. Comparisons of calculated results with experimental values for the carbon dioxide–octylbenzene system 4) are shown in Fig. 2.

4.2 Ternary liquid-liquid equilibria

Five ternary liquid-liquid equilibrium data for alcohols and water were selected for testing. Results are summarized in Table 2. It is clear that the calculated results of the proposed model are much better in agreement with the experimental values than those of the conventional method.
4.3 Binary vapor-liquid-liquid equilibria

Five binary vapor-liquid-liquid equilibrium data of mixtures containing heavy hydrocarbon and associated substance were correlated by the proposed model and the SRK equation. Results are shown in Table 3. Significant improvements were also obtained by the proposed model except for the vapor-phase compositions, which were worse than those obtained by the SRK equation. However, most are within the limit of experimental uncertainty.

Conclusions

The proposed DDLC-EOS unified model is capable of correlating multiphase equilibria with a better result than that of the conventional cubic equation of state, especially for polar and nonpolar asymmetric mixtures.

The temperature-dependence of the binary interaction parameters for this model seems to have a semi-theoretical basis which needs further investigation.

Acknowledgement

This work was supported by the National Natural Science Funds of China.

Nomenclature

\[a_{ij} = \text{attractive parameter for } i-j \text{ pair} \quad \left[\text{J} \cdot \text{m}^{-3} \cdot \text{mol}^{-2} \right] \]
\[b = \text{repulsive parameter} \quad \left[\text{m}^{-3} \cdot \text{mol}^{-1} \right] \]
\[C_{ij} = \text{binary interaction parameter} \quad \left[- \right] \]
\[E_{ij} = \text{nonconformal parameter} \quad \left[- \right] \]
\[f_i = \text{fugacity of component } i \quad \left[\text{MPa} \right] \]
\[m = \text{number of datum point} \quad \left[- \right] \]
\[P = \text{pressure} \quad \left[\text{MPa} \right] \]
\[R = \text{gas constant} \quad \left[\text{J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \right] \]
\[T = \text{absolute temperature} \quad \left[\text{K} \right] \]
\[v = \text{molar volume} \quad \left[\text{m}^3 \cdot \text{mol}^{-1} \right] \]
\[x = \text{mole fraction of liquid phase} \quad \left[- \right] \]
\[Z = \text{compressibility factor} \quad \left[- \right] \]
\[z = \text{coordination number} \quad \left[- \right] \]
\[a_{i} = \text{correction factor for } a_{ij} \quad \left[- \right] \]
\[\phi_i = \text{fugacity coefficient of component } i \quad \left[- \right] \]

\langle Subscripts \rangle

\[i, j, k = \text{component} \]
\[c = \text{critical value} \]
\[cal = \text{calculated} \]
\[exp = \text{experimental} \]

\langle Superscripts \rangle

\[o = \text{conformal reference state} \]

Literature Cited

494 JOURNAL OF CHEMICAL ENGINEERING OF JAPAN