DYNAMIC STRUCTURE OF WATER IN ULTRA PURE WATER PRODUCING SYSTEM OBSERVED BY DIELECTRIC AND \(^{17}\)O-NMR RELAXATIONS

KOJI YAMANAKA
Organo Corporation, Toda 335

AKIO SHIMIZU AND SHINTARO SUGAI
Faculty of Engineering, Soka University, Hachioji 192

SATORU MASHIMO**
Faculty of Science, Tokai University, Hiratsuka 259-12

Key Words: Physical Property, Ultra Pure Water, Dynamic Structure, \(^{17}\)O-NMR, Dielectric Relaxation

In order to observe the influences on microscopic behavior of water molecules caused by water treatment processes, the changes of dynamic structure of water in an ultra pure water (UPW) producing system have been studied by dielectric and \(^{17}\)O-NMR relaxations. The UPW system used in this study consists of typical unit processes employed in current commercial systems for semiconductor manufacturing plants, and produces UPW of the highest quality with specific resistivity of 18.2 M\(\Omega\)-cm. Throughout the whole system from city water till UPW dielectric relaxation time, \(\tau_d\), is kept constant at about 8.7 ps, while \(\beta\), a parameter describing the distribution of \(\tau_d\), increases with each treatment step, reaching a constant value of about 1.00 after the removal of major impurities by a reverse osmosis membrane. The spin-lattice relaxation time, \(T_1\), obtained from \(^{17}\)O-NMR is unchanged at about 7.3 ms through all processes in the system. Spin-spin relaxation time, \(T_2\), shows drastic changes with each treatment step. The changes of \(T_2\) are well explained by proton-exchange reactions in water and should not be related directly with rotational motions of water molecules. These results indicate that the averaged rotational motion of water molecules is unchanged from city water to UPW. The distribution around the average, however, becomes narrower during purification, and the rotational motions of water molecules are highly homogenized in UPW.

Introduction

In semiconductor manufacturing ultra pure water (UPW) is primarily used as a rinsing medium after wet chemical processes. The silicon wafer surfaces fabricated for today’s highly integrated and complex circuits allow no contaminants to remain after rinsing. In order to realize this extremely high level of cleanliness, UPW has reached the ultimate purity, approaching that of theoretically pure water, as shown in Table 1 (Ohmi, 1993).

Recently not only purity, but improved cleaning ability is sought after in UPW or dilute aqueous solutions. Due to escalating requirements for environmental protection and demands to lower manufacturing costs, reduction in chemical consumption in wet processes has become an important issue. At the same time, more efficient cleaning media are also required for the continuously rising levels of wafer surface cleanliness. Under these circumstances, water is expected to play an extended role in wet cleaning. Firstly, as a rinsing medium, it is desirable for UPW to penetrate more rapidly into highly integrated, 0.1 – 1.0 \(\mu\)m patterns and wash out completely the chemicals remaining in the pattern after chemical cleaning processes. Secondly, as an alternative to chemicals, the ability of UPW to remove contaminants sticking to the solid surface is desired.

<table>
<thead>
<tr>
<th>Item</th>
<th>Guaranteed value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistivity</td>
<td>([\text{M}\Omega\cdot\text{cm}])</td>
</tr>
<tr>
<td>Particle</td>
<td>([\text{ml}^{-1}])</td>
</tr>
<tr>
<td>(>0.05 \mu\text{m})</td>
<td>< 5</td>
</tr>
<tr>
<td>(>0.1 \mu\text{m})</td>
<td>< 1</td>
</tr>
<tr>
<td>Bacterium</td>
<td>([\text{ml}^{-1}])</td>
</tr>
<tr>
<td>TOC(^{\text{a}})</td>
<td>([\mu\text{g}/\text{l}])</td>
</tr>
<tr>
<td>DO(^{\text{b}})</td>
<td>([\mu\text{g}/\text{l}])</td>
</tr>
<tr>
<td>SiO(_2)</td>
<td>([\mu\text{g}/\text{l}])</td>
</tr>
<tr>
<td>Na</td>
<td>([\mu\text{g}/\text{l}])</td>
</tr>
<tr>
<td>Ca</td>
<td>([\mu\text{g}/\text{l}])</td>
</tr>
<tr>
<td>Fe</td>
<td>([\mu\text{g}/\text{l}])</td>
</tr>
<tr>
<td>Al</td>
<td>([\mu\text{g}/\text{l}])</td>
</tr>
<tr>
<td>Cl</td>
<td>([\mu\text{g}/\text{l}])</td>
</tr>
<tr>
<td>SO(_4)</td>
<td>([\mu\text{g}/\text{l}])</td>
</tr>
</tbody>
</table>

Table 1 An example of guaranteed quality of UPW used in a semiconductor manufacturing plant (Ohmi, 1993)

\(^{\text{a}}\) Total organic carbon \(^{\text{b}}\) Dissolved oxygen

* Received on September 5, 1995
Correspondence concerning this article should be addressed to K. Yamanaka
** deceased on March 29, 1996
Not only in semiconductor manufacturing, but in the various fields where inorganic and organic chemicals, including halogenated hydrocarbons, are used in cleaning, water with improved cleaning ability will be quite useful. The ideal wet cleaning process should be accomplished by water and dilute innocuous aqueous solutions in the future.

For the improvement in the cleaning abilities of water and dilute solutions, the properties of water such as surface tension, viscosity and solubility should be controlled according to the purpose and role of water in the process. These macroscopic properties are determined by the microscopic behavior of the water molecules. Understanding the microscopic behavior of the molecules is essential to understand the macroscopic phenomena, and to build up the water property controlling technologies.

So far, raising the purity of UPW has been pursued enthusiastically. In these improvements, the characteristics of the water have been described by the amount of impurities, and the performance of each constituent purification process has been evaluated by its impurity reduction efficiency. Very little attention, however, has been paid to the microscopic properties of water molecules in water treatment systems.

In this study we have observed the microscopic behavior of water molecules in a UPW production system by dielectric and 1H-NMR relaxation measurements, as a beginning of the investigations on the relations between microscopic behavior of water molecules and water treatment techniques, for preparation of the development of water property control technology which may extend the role of water in future wet processes.

![Fig. 1] Block flow diagram of UPW system used in this study. CF, carbon filter; MF, membrane filter; UVST, ultraviolet sterilizer; RO, reverse osmosis membrane; DAM, membrane degasifier; MBP, mixed bed ion exchanger; UVOX, ultraviolet oxidizer; CP, cartridge polisher (small-sized mixed bed ion exchanger); UF, ultrafilter

1. Experiment

1.1 Ultra pure water producing system (UPW system)

A block flow diagram of the UPW system used in this study is shown in Fig. 1. The system is a downsized experimental apparatus consisting of all the typical unit processes generally employed in current commercial UPW systems for the semiconductor industry. The qualities of water in the system, shown in Table 2, show that the system has been operated normally and has produced UPW of the highest quality accepted in the current semiconductor industry. The system was installed beside NMR and time domain reflectometry (TDR) measuring apparatus to minimize quality loss and property changes of the sample water, especially of UPW.

<table>
<thead>
<tr>
<th>Item</th>
<th>Raw water</th>
<th>Primary pure water</th>
<th>UPW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conductivity [μS/cm]</td>
<td>126</td>
<td>1.75</td>
<td>—</td>
</tr>
<tr>
<td>Resistivity [MΩ⋅cm]</td>
<td>—</td>
<td>0.58</td>
<td>18.2</td>
</tr>
<tr>
<td>Particle [ml/l]</td>
<td>—</td>
<td>—</td>
<td>4</td>
</tr>
<tr>
<td>>0.05 μm</td>
<td>—</td>
<td>—</td>
<td>0</td>
</tr>
<tr>
<td>>0.1 μm</td>
<td>—</td>
<td>—</td>
<td>0.1</td>
</tr>
<tr>
<td>Bacterium [ml/l]</td>
<td>—</td>
<td>—</td>
<td>1.0</td>
</tr>
<tr>
<td>TOC (a) [μg/l]</td>
<td>730</td>
<td>70</td>
<td>9.1</td>
</tr>
<tr>
<td>DO (b) [μg/l]</td>
<td>8.96×10^3</td>
<td>8.83×10^3</td>
<td>0.04</td>
</tr>
<tr>
<td>SiO₂ [μg/l]</td>
<td>22.3×10^3</td>
<td>0.34×10^3</td>
<td><0.003</td>
</tr>
<tr>
<td>Na</td>
<td>40.0×10^3</td>
<td>0.25×10^3</td>
<td><0.003</td>
</tr>
<tr>
<td>Ca</td>
<td>16.2×10^3</td>
<td><0.5</td>
<td><0.003</td>
</tr>
<tr>
<td>Fe</td>
<td><0.03×10^3</td>
<td><1.0</td>
<td><0.005</td>
</tr>
<tr>
<td>Al</td>
<td><0.01×10^3</td>
<td><1.0</td>
<td><0.005</td>
</tr>
<tr>
<td>Cl</td>
<td>4.2×10^3</td>
<td>13</td>
<td><0.05</td>
</tr>
<tr>
<td>SO₄ [μg/l]</td>
<td>2.5×10^3</td>
<td>1.0</td>
<td><0.1</td>
</tr>
</tbody>
</table>

a) Total organic carbon b) Dissolved oxygen
which is subject to being contaminated due to contact with air, among other factors.

1.2 Dielectric relaxation measurements

Dielectric relaxation measurements were carried out with a digitizing oscilloscope (Yokogawa Hewlett Packard HP-54121) utilizing TDR (Cole, 1975a, 1975b, 1980, Umehara et al., 1990). The measurement system was set to cover a frequency range from 100 MHz to 20 GHz. The step pulse rise time and voltage increase were 35 ps and 200 mV, respectively. On-line measurements were made in all TDR measurements; i.e. outlet water from each process in the UPW system was fed to the TDR detection cell directly and measured while it flowed through the cell. The temperature of the sample water was controlled to be 25.0±0.1°C by a heat exchanger positioned before the TDR cell. 128 reflected pulses were integrated in each measurement, and the measurements were repeated ten times for each sample.

1.3 ¹⁷O-NMR relaxation measurements

The ¹⁷O spin-lattice relaxation time, T₁, and full width at half amplitude of Lorentzian, Hw, were measured with a FT NMR spectrometer (JEOL EX-400). T₁ was measured by the ordinary inversion recovery method with a pulse sequence of 180°-τ-90° pulses. The T₁ value for each sample water was determined from a series of measurements with 16 different time intervals, τ, and a waiting time which was greater than ten times of T₁. The spin-spin relaxation times, T₂, presented in this article are derived from linewidth measurements. The NMR absorption signal of ¹⁷O is described by a Lorentzian function, and its full width at half amplitude, Hw, is connected with T₂ by T₂=1/(πHw). The free induction decay signals were integrated 160 and 3200 times in T₁ and Hw measurements, respectively. Quartz tubes of 5 mm diameter were used in the measurements. Sample water from each process of the UPW system was drawn into the quartz tube after passing through a heat exchanger adjusting the temperature to 25.0±0.1°C, and overflowed to in a water bath where temperature was controlled to be in the same range. After sampling, T₁ and Hw were measured immediately while keeping the temperature of the sample water within 25.0±0.2°C. T₁ and Hw were reproducible to within 2%.

2. Results and Discussion

2.1 Dielectric relaxation time and its distribution

The dielectric relaxation of water is described by the Cole-Cole representation:

\[
\varepsilon^* - \varepsilon_\infty = \frac{\Delta \varepsilon}{1 + (i\omega \tau_d)^p}
\]

where \(\varepsilon^*\) and \(\varepsilon_\infty\) are the complex permittivity at angular frequency \(\omega\) and the permittivity extrapolated to \(\omega=\infty\), respectively. \(\Delta \varepsilon\) is the relaxation strength, \(\tau_d\) is the dielectric relaxation time, and \(p\) is a parameter describing the distribution of relaxation times. The frequency dependence of \(\epsilon^*\) is directly measured by the TDR method. A typical \(\epsilon^*\) of water as a function of \(\omega\) is shown in reference (Kaatz, 1989). \(\tau_d\) and \(p\) were obtained from Eq. (1) using a least-squares fitting procedure. In the fitting procedure, \(\varepsilon_\infty\) was fixed at 5.2, and \(\Delta \varepsilon\) was allowed to vary slightly from 73.0. These are generally accepted values for both the parameters (Kaatz, 1989). \(\tau_d\) and \(p\) values for water passing through the UPW system are shown in Fig. 2. Through all the processes of the UPW system, \(\tau_d\) remains constant at around 8.7 ps. \(\tau_d\) detected for UPW was 8.71 ps at 25°C. \(\tau_d\) indicates the averaged rotational movability of water molecules in the sample. The constancy of \(\tau_d\) shows that the averaged rotational motion of water molecules does not change from city water to UPW. On the other hand, \(\beta\) increases with each treatment step, and reaches a constant close to 1.000 after being treated by a reverse osmosis (RO) membrane. This change of \(\beta\) indicates that the distribution of the rotational motions of water molecules narrows with proceeding treatment steps, and is highly homogenized after RO treatment.

As shown in Table 2, raw water includes various kinds of impurities, including ions, organic materials, and dissolved oxygen in the order of mg/l. These impurities cause many different kinds of interactions with water molecules according to their size, charge, hydrophobicity, and other properties, and result in various rotational mobilities of water molecules in the raw water. After major impurities are removed by RO, only H₂O-H₂O interactions dominate, with very few other kinds of interactions made by residual
impurities. The change of β observed in Fig. 2 can be explained by this change of homogeneity in interactions around water molecules.

This finding implies that β can be used as an index for water purity, which is sensitive to various kinds of impurities by itself, and is not limited to a certain kind or group of impurities. In Fig. 2, the scatter of β seen in the first several steps in the UPW system converge within an error of ±0.002 after RO treatment. This also reflects the inhomogeneities in the interactions around water molecules before RO, and homogeneities in pure water and UPW. The scatterings in β values in repetitive measurements of TDR will also help the determination of water purity.

2.2 Spin-lattice and spin-spin relaxation rates of 17O-NMR

The 17O nucleus is a quadrupole nucleus with spin quantum number of $5/2$, and its nuclear relaxation is mainly caused by the interaction between the electric quadrupole moment of the 17O-nucleus and the electric field gradients in the molecule. In this case, the relation between the spin-lattice relaxation rate, $R_1 = 1/T_1$, and the reorientational correlation time, τ_c, is given by

$$R_1 = \frac{3\pi^2}{10} \left(\frac{2I + 3}{4I(2I - 1)} \right) \left(\frac{\varepsilon^2 q Q}{h} \right)^2 \left(1 + \frac{\eta^2}{3} \right) \tau_c$$ \hspace{1cm} (2)

where I, η, and $\varepsilon^2 q Q$ are the spin, asymmetric parameter, and quadrupole coupling constant, respectively (Abragam, 1961, McConnell, 1987). τ_c of the 17O nuclei furnish information on the reorientational motion of the perpendicular axis to the H$_2$O molecular plane as shown in Fig. 3. As seen in eq. (2), τ_c is proportional to R_1. The orientational motions of water molecules can be derived from the measurement of T_1. On the other hand, the spin-spin relaxation time, T_2, is affected by both the orientational motions of water molecules and the rate of proton exchange reactions in water (Meiboom, 1961). The difference between T_1 and T_2 represents the contribution of the proton exchange reaction as described later.

Spin-lattice relaxation rate, R_1, and spin-spin relaxation rate, R_2, obtained from 17O-NMR measurements are shown in Fig. 4. R_1 remains constant at about 138 sec$^{-1}$, while R_2 shows a drastic change with each treatment step. By using reference parameters (Shimizu and Taniguchi, 1991), τ_c was calculated to be 1.8 ps. Similarly to τ_0, τ_c represents the averaged rotational movability of water molecules. The constancy of R_1 in Fig. 4 reveals that the averaged rotational motion of water molecules does not change throughout the whole UPW system, which is in good agreement with the result of τ_0.

The drastic change of R_2 can be explained by proton exchange reactions in sample water. Meiboom proposed that pH dependence of R_2 can be described by the following equations (Meiboom, 1961):

$$R_2 - R_1 = \frac{\tau_0 \Sigma P_i \delta_i^2}{1 + 2\tau_c \delta_i^2}$$ \hspace{1cm} (3)

$$\tau_i^{-1} = \frac{2}{3} k_i [H^+] + k_2 [H^+]$$ \hspace{1cm} (4)

where τ_0, P_i, and δ_i are the average time for a proton bonding to a specific oxygen, the relative intensity of the ith line in a triplet of an 17O signal, and the frequency difference between the ith line and dominant line, respectively. K_w is the dissociation constant of water (1.0×10^{-14} mol$^{-1}$ at 25°C). k_1 and k_2 are the proton exchange rate constants:

$$H_2O + H_3O^+ \xrightleftharpoons{k_1} H_3O^+ + H_2O$$

$$H_2O + OH^- \xrightleftharpoons{k_2} OH^- + H_2O$$ \hspace{1cm} (5)
The $R_2 - R_1$ obtained in the present study is plotted in Fig. 5 with a (solid line) calculated by Eqs. (3) and (4). In Fig. 5, the data of UPW bubbled with CO$_2$ (plots No. 13 and 14) are added so as to have plots in the acidic region and show the large influence of air contamination in T_2 measurements of 17O on UPW. In the calculation, k_1 and k_2 were determined by the least-squares procedure to be 6.56×10^9 and 4.94×10^9 $\text{mol}^{-1} \text{s}^{-1}$, respectively, which is consistent with the literature (Meiboom, 1961) within experimental error. The calculated curve reproduces experimental results very well. In the UPW system, the pH of water changes by ion removal, and CO$_2$ production by the decomposition of organic materials as shown in Fig. 5. It is clear that the drastic change of R_2 in the present system is completely explained by proton exchange reactions in the sample water. In addition it is confirmed that the measurement on UPW with the greatest possible care for prohibiting contamination gives a T_2 value in good agreement with the value for water of neutral pH expected by proton exchange mechanism.

Conclusion

Using TDR and 17O-NMR measurements, we have observed the natural properties of water in the UPW producing system. The consistency of r_3 and r_e through the whole system has shown that the averaged rotational motion of water molecules does not change during any treatment steps in the UPW system from city water to UPW. However, the change of β has revealed that the distribution of the rotational motions of water molecules becomes narrower with each purification process and is highly homogenized in UPW. β can be used as a novel index for water purity sensitive to various kinds of impurities. τ_d, β, R_1, and R_2 in UPW at 25°C of the highest quality utilized in the current semiconductor industry were 8.71 ps, 0.999±0.001, 138 s^{-1}, and 373 s^{-1}, respectively. The drastic change of R_2 in the UPW system was clearly explained by proton exchange mechanism, and should not be directly correlated with the rotational motion of water molecules.

We have started a basic investigation on the relationship between dynamic structure of water and water treatment technology, and observed that the rotational motions of water molecules are highly homogenized in UPW. For shedding light on the hidden functions of water and utilizing them in future industries, it will be more and more important to understand the microscopic behavior of water under various conditions.

Nomenclature

\begin{align*}
e^2Q &\equiv \text{quadrupole coupling constant} \quad [\text{Hz}] \\
H_w &\equiv \text{full width at half amplitude of NMR signal} \quad [\text{Hz}] \\
I &\equiv \text{spin quantum number} \quad [-] \\
K_w &\equiv \text{dissociation constant of water} \quad [\text{mol}^{-1} \text{I}] \\
k_1 &\equiv \text{proton exchange rate constants} \quad [\text{mol}^{-1} \text{I}^{-1} \text{S}^{-1}] \\
k_2 &\equiv \text{proton exchange rate constants} \quad [\text{mol}^{-1} \text{I}^{-1} \text{S}^{-1}] \\
P_i &\equiv \text{relative intensity of ith line in a triplet of } ^{17}\text{O-NMR signal} \quad [-] \\
R_1 &\equiv \text{spin-lattice relaxation rate} (=1/T_1) \quad [\text{s}^{-1}] \\
R_2 &\equiv \text{spin-spin relaxation rate} (=1/T_2) \quad [\text{s}^{-1}] \\
T_1 &\equiv \text{spin-lattice relaxation time} \quad [\text{s}] \\
T_2 &\equiv \text{spin-spin relaxation time} \quad [\text{s}] \\
\beta &\equiv \text{parameter describing distribution of dielectric relaxation times} \quad [-] \\
\delta_i &\equiv \text{frequency dereference between the ith line and dominant line in triplet of } ^{17}\text{O-NMR signal} \quad [-] \\
\Delta e &\equiv \text{dielectric relaxation strength} \quad [-] \\
\varepsilon_\infty &\equiv \text{permittivity extrapolated to } \omega = \infty \quad [-] \\
\varepsilon^* &\equiv \text{complex permittivity} \quad [-] \\
\eta &\equiv \text{asymmetric parameter} \quad [-] \\
\tau_c &\equiv \text{reorientational correlation time} \quad [\text{s}] \\
\tau_\alpha &\equiv \text{dielectric relaxation time} \quad [\text{s}] \\
\tau_\text{ave} &\equiv \text{average time for proton to be bonded to oxygen} \quad [\text{s}] \\
\omega &\equiv \text{angular frequency} \quad [\text{Hz}]
\end{align*}

Literature Cited

Kaatze, U.; “Complex Permittivity of Water as a Function of