JOURNAL OF CHEMICAL ENGINEERING OF JAPAN
Online ISSN : 1881-1299
Print ISSN : 0021-9592
Transport Phenomena and Fluid Engineering
Numerical Investigation of a Local Oxygen Injection Effect on Argon Induction Plasmas Using a Chemically Non-Equilibrium Model
Masaya ShigetaNobuhiko AtsuchiTakayuki Watanabe
Author information
JOURNAL FREE ACCESS

2006 Volume 39 Issue 12 Pages 1255-1264

Details
Abstract

Effective generation of chemical reactive species in thermal plasmas has been required in the field of material processing and waste treatment. The effect of oxygen injection into argon induction plasmas was investigated by numerical analysis without chemical equilibrium assumptions. Reaction kinetics rates of the dissociation and recombination of oxygen as well as the ionization were taken into account. The transport properties were estimated using higher-order approximation of the Chapman–Enskog method for required accuracy. Oxygen dissociation and heat flux to a torch wall can be controlled by oxygen injection location. Therefore, suitable oxygen injection needs to be chosen according to the application requirement. The present modeling would give more precise information and provide the guidance for the rational design of new material processing with effective reactive gas injection into plasmas.

Content from these authors
© 2006 The Society of Chemical Engineers, Japan
Previous article Next article
feedback
Top