J-STAGE Home  >  Publications - Top  > Bibliographic Information

JOURNAL OF CHEMICAL ENGINEERING OF JAPAN
Vol. 49 (2016) No. 10 p. 904-908

Language:

http://doi.org/10.1252/jcej.16we062

Transport Phenomena and Fluid Engineering

We use a front-tracking method to simulate inward solidification in a cylindrical container with volume change. The problem includes temporal evolution of three interfaces that meet at a triple point. The governing Navier–Stokes and energy equations are solved for the whole domain, setting the velocities in the solid phase to zero and with the non-slip condition on the solid–liquid interface. Computational results show that a cavity forms in the center of the cylinder if the density of solid is higher than that of liquid, i.e. ρsl>1.0. In contrast, if ρsl<1.0, the solidified product has a conical shape in the central region of the cylinder. The triple point also affects the solidification process as an increase in the growth angle results in a decrease in the cone angle at the top in the case of volume expansion.

Copyright © 2016 The Society of Chemical Engineers, Japan

Share this Article