Online ISSN : 1881-1299
Print ISSN : 0021-9592
Process Systems Engineering and Safety
Bayesian Optimization for Hydrodynamic Characterization of a Cylindrical Orbitally Shaken Bioreactor with a Bump at the Bottom
Liya WangRyosuke IsobeYasunori Okano Masahiro Kino-OkaHiroyuki MatsudaTomohiro Tokura
Author information

2021 Volume 54 Issue 9 Pages 493-499


An orbitally shaken bioreactor is the most popular system for cell cultivation in a suspension culture owing to its unique characteristics. However, conventional bioreactors struggle to meet the anticipated demand in practical applications due to their limitations. In this study, numerical simulations are conducted to evaluate the performance of a newly developed orbitally shaken bioreactor that is equipped with a vaulted “bump” at the bottom wall. The presence of this bump significantly improves the mass transfer and cell suspension ratio in the culture medium without increasing the shear stress; it also efficiently reduces the cell aggregation in the central part at the bottom wall. In addition, to enable a suitable cell culture environment for practical applications, the Bayesian algorithm is employed to optimize the control of three parameters, namely bump height (hb), shaking velocity (ω), and shaking radius (R), of this reactor. For all the cases considered, the obtained data related to mass transfer, suspension ratio, and shear stress are analyzed. The simulation results show that the optimal bioreactor is preferable for cell cultivation compared with the initial state, owing to its high capability for mass transfer and suspending cells. It can be concluded that the methodology described in this paper is a feasible and reliable tool for performance prediction and process optimization in biotechnology.

Related papers from these authors
© 2021 The Society of Chemical Engineers, Japan
Previous article Next article