equation with four ternary constants. The results derived by the Wilson equation show that only nine data points out of total 60 experimental points for the carbon tetrachloride-cyclohexane-isopropanol system are consistent (they are runs 2, 4, 9, 11, 17, 18, 48, 50, and 51), and that for the n-hexane-ethanol-benzene system only 6 data points (runs 1, 2, 4, 11, 16, and 20) are considered consistent while the remaining 37 experimental points are considered less consistent or inconsistent. Larson and Tassios\(^{11}\) observed that the Wilson equation describes nonideal systems better than does the Margules equation, which is equivalent to the Redlich-Kister equation. The experimental data of these two systems are not considered of good quality, as shown in Table 4.

In conclusion, the Li-Lu and Mc Dermott-Ellis tests and the Redlich-Kister equation do not always detect random errors present in ternary vapor-liquid equilibrium data, but the Wilson equation does it well if vapor-liquid equilibrium data for three binary systems constituting a ternary system are represented accurately by the Wilson equation.

Acknowledgment

The author is grateful to the Data Processing Center, Kyoto University, and to the Computer Center, Osaka University, for the use of their facilities.

Nomenclature

\(B_{ij}\) = second virial coefficient [cal/mol]
\(D\) = value as defined by Eq.(2)
\(E\) = value as defined by Eq.(14)
\(F\) = objective function
\(f\) = fugacity [atm]
\(g_E\) = excess Gibbs free energy [cal/mol]
\(P^*_i\) = saturated vapor pressure of pure component \(i\) [atm]
\(P\) = total pressure [atm]
\(Q\) = value as defined by \(g_E/RT\)
\(R\) = gas constant \([1.987\text{cal/mol} \cdot \text{K}]\)
\(T\) = absolute temperature [°K]
\(v\) = molar volume of vapor mixture [ml/mol]
\(v_i^L\) = molar liquid volume of pure component \(i\) [ml/mol]
\(x_i\) = mole fraction of component \(i\) in the liquid phase
\(y_i\) = mole fraction of component \(i\) in the vapor phase
\(z\) = compressibility
\(\gamma_i\) = liquid-phase activity coefficient of component \(i\)
\(A_{ij}\) = constant as defined by Eq.(7)

\(\lambda_x\) = energies of interaction between an \(i\)-\(j\) pair of molecules [cal/mol]
\(\phi_i\) = vapor-phase fugacity coefficient of component \(i\)
\(\phi^*_i\) = vapor-phase fugacity coefficient of pure saturated component \(i\) at \(P^*_i\) and system temperature
\(\Sigma^+\) = summation of positive terms in Eq.(1)
\(\Sigma^-\) = summation of negative terms in Eq.(1)

Literature Cited

1) Am. Petroleum Inst. Research Project 44: “Selected Values of Hydrocarbon and Related Compounds”, Chemical Thermodynamic Properties Center, Texas A. and M. University, College Station, Tex. (1964)
6) Idem: ibid., p. 408
16) Nagata, I.: ibid., 10, 106 (1965)

ON THE APPROXIMATE EXPRESSION OF THE EFFECTIVENESS FACTOR FOR THE ENZYME FILM REACTOR*

Shinichiro GONDO, Shogo ISAYAMA and Koichiro KUSUNOKI
Department of Chemical Engineering, Kyushu University, Fukuoka

As for the enzyme film reactor where the enzyme is naturally or artificially fixed in a film supporter of thickness \(L_0\), one side of which is attached to the inner wall and the other side exposed to the outer solution, Atkinson and Daoud\(^{1,2}\) reported that its effectiveness factor could be correlated by introducing the term \(m_A\) defined by Eq.(1) when the reaction rate is expressed

\[\eta = \frac{1}{1 + m_A} \frac{dN}{dt}\]

JOURNAL OF CHEMICAL ENGINEERING OF JAPAN

* Received on August 9, 1973

\[\text{T}812\] 福岡市東区箱崎
九州大学工学部化学機械工学科 櫻井晋一郎
Fig. 1 Representation of the effectiveness factor in terms of m_A.

Fig. 2 Dependency of the ratio of m_G to m_A on B by the Michaelis-Menten type of rate equation.

$\frac{m_A}{m_G} = \frac{M}{(1+B)^{0.576}}$ \hspace{1cm} (1)

where

$M = \frac{V_{max} L}{K_m}$ \hspace{1cm} (2)

Here we will tentatively call m_A Atkinson's modulus. Using this modulus they gave the following equation for the effectiveness factor of a film reactor.

$E_A = \tanh(m_A)$ \hspace{1cm} (3)

They plotted E_A against m_A for the various values of B to show an agreement of E_A in the region of B greater than about 3 with a corresponding exact value, E, which can only be given by solving numerically the differential equation of one-dimensional steady-state diffusion with the Michaelis-Menten type of reaction under the given conditions of B and M. But through a closer examination of their plots, which are partly shown in Fig. 1, it can be found that there are systematic departures of E from E_A, for example, on one side of the line for B of 5 and on the opposite side for such a large value of B as 500, as shown in Fig. 1.

Comparison of Atkinson's Modulus with the General Modulus

We compared m_A with the general modulus m_G, $m_G = \frac{M}{\sqrt{2}} \cdot \frac{B}{1+B} \cdot \frac{1}{\sqrt{B-\ln(1+B)}}$ \hspace{1cm} (4)

which was derived by Bischoff for the Michaelis-Menten type of rate equation. Figure 2 shows that the ratio of m_G to m_A becomes minimum, 0.923, at B of 5.523, reaches unity as B decreases and increases monotonously beyond unity as B increases. Figure 2 reveals that the Atkinson's modulus can be considered as an approximate but not always an adequate expression of the general modulus.

Approximate Expression of the Effectiveness Factor in Terms of the General Modulus

Introducing the general modulus, we can rewrite Eq.(1) into the following form to obtain a probably more successful approximate equation.

$E_A = \frac{\tanh(m_A)}{m_A}$ \hspace{1cm} (5)

According to Bischoff's theory, the exact value of the effectiveness factor for large m_G becomes very close to the reciprocal of m_G, which coincides with E_G under the condition of large m_G.

Figure 3 shows that the exact values of the effectiveness factor are well correlated by Eq.(5) in the region of m_G greater than about 4, even for such values of B as 5 and 500 for which Eq.(3) fails to approximate the exact values. Figure 4 shows that in the region of m_G between 0.1 and 4, the ratio of E_G to E decreases to less than unity as B increases, reaching its minimum at m_G of unity. Some corrections are needed for the effect
The best value of a depends on m_G, for example, as shown in Fig. 5, as well as on B. Through the comparative examination of E_E/E changing the value of a of a positive integer from 1 to 10 and also the value of B from 0.5 to 500, a of 5 was found to give better correction on average over the range of B tested. With a as 5, Eq. (7) gives an estimation of E within 4% error at most when B is 5, and maximum error becomes less than 4% as B increases or decreases from 5, i.e., 2% maximum error for B of 0.5 and 1% for 500. The value of m_G where the maximum error occurs decreases from about 1.4 to 1.0 as B increases from 0.5 to 500.

Figure 6 shows the ratio of E_A/E to E against m_A where rather complicated relations are observed between E_A/E and B. It seems quite difficult to find an appropriate correction equation for E_A, although Atkinson and Daoud proposed a rough correction equation for the effect of B larger than unity.

Conclusion

Making it clear that the term m_A defined by Atkinson and Daoud is an approximate but not always an adequate expression of the general modulus, we propose Eq. (5) instead of Eq. (3). The former gives better and theoretically founded approximate expression of the effectiveness factor of the enzymic film reactor for m_G greater than 4 or less than 0.1. We also examined Eq. (7) as a correction equation for the range of m_G between 0.1 and 4.

Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
</table>
| a | constant appearing in Eq. (5) [
| B | ratio of the substrate concentration of outer liquid to K_m [-] |
| D | diffusion constant of the substrate in the film supporter [cm2/sec] |
| E | exact value of the effectiveness factor [-] |
| E_A | effectiveness factor given by Eq. (3) [-] |
| E_C | effectiveness factor given by Eq. (6) [-] |
| E_G | effectiveness factor given by Eq. (5) [-] |
| K_m | Michaelis constant [mol/cm3] |
| L | thickness of the film reactor [cm] |
| M | Thiele modulus defined by Eq. (2) [-] |
| m_A | modulus defined by Eq. (1) [-] |
| m_G | general modulus defined by Eq. (4) [-] |
| V_{max} | maximum velocity of the Michaelis-Menten equation [mol/cm3.sec] |

Literature Cited