Synthesis of β-Sialon from Si₃N₄ and Aluminum-Isoproxide

Kazushi KISHI, Seiki UMEBAYASHI, Eiji TANI and Kazuo KOBAYASHI

(Government Industrial Research Institute, Kyushu)

β-sialon with $z = 0.25$, 0.5, 0.75, 1 and 2 in Si₆₋₇Al₂O₇N₈₋₇ was fabricated from Al(Oi-Pr)₃/tetrahydrofuran solution containing β-Si₃N₄ particles. The solution was ball milled for 24 h, hydrolyzed, dried and calcined at 900°C for 2 h in air. The mixture consisted of α-Si₃N₄ and alumina was hot-pressed at 1850°C for 1 h under a pressure of 300 kg/cm². Three-point bending strength, phases and microstructure were investigated. β-sialon with $z = 0.25$ was not fully densified (88% of theoretical). β-sialon with $z = 0.5$, 0.75, 1 and 2 showed complete densification. β-sialon with $z = 0.25$ consisted of β-sialon, a small amount of α-Si₃N₄ and O" phase. β-sialon with $z = 0.5$ consisted of β-sialon and a small amount of O" phase. β-sialon with $z = 0.75$ consisted of β-sialon, a small amount of O" and X phases. β-sialon with $z = 1$ and 2 consisted of β-sialon and X phase respectively. β-sialon with $z = 0.5$, 0.75 and 1 consisted of 0.5-1 μm equiaxed grains and boundary phase. Its microstructure was very homogeneous and defects such as pore, clusters of large grains which were found in β-sialon fabricated from the mixture of α-Si₃N₄ and α-Al₂O₃ powders were not observed. In most of all β-sialon, fracture originated from surface flaws caused by machining. The strength of β-sialon with $z = 0.5$ was much improved (67 kg/mm² in average, 72 kg/mm² in maximum) comparing with β-sialon ($z = 0.5$ - 1) fabricated from the mixture of α-Si₃N₄ and α-Al₂O₃ powders (50 kg/mm² in average). The strength of β-sialon with $z = 2$ showed a very low value of 14 kg/mm² in average which was caused by the aggregation of Al(OH)₃ during hydrolysis of Al(Oi-Pr)₃.

[Received December 21, 1984]

Key-words: β-Sialon, Hot-press, Aluminum-isoproxide, Bending strength

1. 緒 言

β-サイアロン焼結体 (Si₆₋₇Al₂O₇N₈₋₇, $z = 0$ - 4.2) は耐酸化性や耐食性に優れ、高温でも強度の低下が少ないのでから、高温構造材料として注目されている。
しかし，\(\beta\)-サイアロン焼結体は，\(Si_3N_4-Y_2O_3-Al_2O_3\)系焼結体\(^1\)や \(Si_2N_2-MgO\)系焼結体\(^2\)に比べ，強度が低い\(^3\)。その原因の一つとして，出発原料の混合不均一に起因すると思われる欠陥部が焼結体中に点在し，破壊の発生源となると考えられる\(^4\)。このような欠陥の生成を防ぐためには，出発原料を溶液の状態で混合し，均一に分散させることができたと考えられる。

金属アルコキシドを加水分解して得られる金属酸化物粉末は，均質性，焼結性に優れていることが知られている\(^5\)。金属アルコキシドの溶液を\(\beta\)-サイアロンの原料として使用した例として，三友らは，アルミニウムイソブロキシドをケイ酸エチルの溶液を，\(Si/Al\)比が\(z=1\)，\(2\)，\(3\)及び\(4\)の\(\beta\)-サイアロンと等しくなるように混合し，加水分解，子備焼成した後カーボンプラックを添加して，窒素気流中で1430℃で焼成し，\(\beta\)-サイアロンの粉末を得た\(^6\)。更に，同方法で得た\(z=3\)組成の粉末を1750℃，200kg/cm\(^2\)の圧力下でホットプレスし，相対密度99％以上の焼結体を得ている\(^7\)。著者らは均一に混合した原料粉末を製造し，欠陥の少ない\(\beta\)-サイアロン焼結体を得るために，アルミニウムアルコキシド溶液中に\(\alpha\)-\(Si_3N_4\)粉末を混合し，加水分解，仮焼後ホットプレスする製造方法を検討した\(^8\)。

本報告では，アルミニウムイソブロキシドと\(\alpha\)-\(Si_3N_4\)粉末を用いて\(z=0.25\sim2\)の\(\beta\)-サイアロン焼結体を製造し，曲げ強度，生成相，組織及び破壊面を，\(\alpha\)-\(Al_2O_3\)と\(\alpha\)-\(Si_3N_4\)粉末から得た同組成の焼結体と比較し，調べた結果について述べる。

2. 実験方法

2.1 出発原料

実験に使用した\(\alpha\)-\(Si_3N_4\)粉末は東洋曹達工業 TS-7（平均粒径 0.6 \(\mu\)m，\(Si\)率>90％），アルミニウムイソブロキシド（以下\(Al(Oi-Pr)\)と記す）は半井化学薬品製，\(\alpha\)-\(Al_2O_3\)粉末は岩塩化学工業 RA-40（平均粒径 0.8 \(\mu\)m，純度99.99％）である。各出発原料の化学分析値を表1に示した。

2.2 焼結体の製造

表2に各出発原料の配合比を示した。この配合比は，\(Al/Si\)の比がそれぞれ\(Si_{2-z}Al_{2}O_{3}N_{2+z}\)の\(z=0.25\)，0.5, 0.75, 1及び2の\(\beta\)-サイアロンに等しくなるようにしたものである。配合比の計算で\(\alpha\)-\(Si_3N_4\)中の酸素及び\(Al(Oi-Pr)\)表面の加水分解生成物の補正は行っていない。

図1に\(Al(Oi-Pr)\)と\(\alpha\)-\(Si_3N_4\)粉末からの焼結体製造手順を示した。\(Al(Oi-Pr)\)の所定量をテトラハイドロフランに溶解した溶液に\(\alpha\)-\(Si_3N_4\)粉末を所定量加え，250ccのポリエチル製容器で10mm\(\varnothing\)のアルマノールとともに24時間混合した。混合後の懸濁液を加熱してはんじながら蒸留水を毎分10滴の割合で滴下し，\(Al(Oi-Pr)\)を加水分解した。加水分解後の懸濁液を加熱してテトラハイドロフランを除いた後，希塩酸でpH 4に調整し，室温で24時間かくはんして解蔽を行った。

解蔽後の懸濁液を充分乾燥した後，空気中に900℃，2時間仮焼して原料粉末とした。原料粉末20gをBN粉末を塗布した内径30 mm角のカーボンダイスを用いて1850℃，300 kg/cm\(^2\)の圧力下で1時間ホットプレスして焼結体を得た。

比較のために，\(\alpha\)-\(Al_2O_3\)粉末と\(\alpha\)-\(Si_3N_4\)粉末を\(Al(Oi-Pr)\)と\(\alpha\)-\(Si_3N_4\)の場合と同一\(Al/Si\)比になるように配合したものをエタノール中で24時間混合し，上記の条件でホットプレスして焼結体を製造した。

2.3 かさ密度の測定及び生成相の同定

得られた焼結体の表面を #270 のダイヤモンドホイー
45 研和司ほか

ルで平面研削した後，アルキメデス法でかさ密度を測定した。

各焼結体の生成相を粉末X線回折法（CuKα, 40 kV, 30 mA, カーボンモノクロメーター使用）で調べた。またz=1の原料粉末については，1200℃，1400℃，1600℃及び1700℃で各々1時間ホットプレスして各温度での生成相を調べた。

2.4 曲げ強度の測定

焼結体から約4×4×30mmの試片を切り出し，各面を#600のダイヤモンドエッジで平面研削し，引っ張り面を1μmのアルミナで研磨して約3×3×30mmの曲げ試片とした。曲げ強度は支点間距離20mmの3点曲げ試験機を用いて，クロスヘッドスピード0.5mm/minで測定し，4～6本の値を平均した。

2.5 組織及び破断面の観察

焼結体の組織は曲げ試片の一部を樹脂に埋め込んで研磨し，70℃のフッ酸，硝酸混合液で5分間腐食処理を施した後，走査型電子顕微鏡で観察した。また腐食処理前の焼結体の表面を光学顕微鏡で観察した。

曲げ試験後の各試片の破断面を光学顕微鏡で観察した。

3. 実験結果

3.1 焼結体のかさ密度及び生成相

図2にAl(Oi-Pr)3及びα-Al2O3を用いたz=1組成原料粉末のホットプレス時の収縮曲線を示した。Al(Oi-Pr)3を用いた場合，約1350℃からゆるやかな収縮が始まり，一たんそれが止まった後，約1650℃から急激な収縮が見られた。α-Al2O3を用いた場合，約1350℃での収縮は見られず，約1650℃からの急激な収縮だけが見られた。

図3にAl(Oi-Pr)3を用いたz=1組成原料粉末の焼結温度に伴う生成相の変化を示した。仮焼後の粉末で結晶相として明りょうに認められたのは，α及びβ-Si3N4のもので，Al2O3は確認できなかった。1200℃でSi3N4のほかに少量のα-Al2O3が見られた。1400℃及び1600℃でα-Al2O3が増加し，また少量のムライト（3Al2O3•2SiO2）の生成が見られた。1700℃でα-Al2O3及びα-Si3N4が減少し，3Al2O3•2SiO2の消失及びX相の生成が見られた。α-Al2O3を用いた原料粉末では，1400℃～1600℃における3Al2O3•2SiO2の生成は見られなかった。

Table 3. Densities and phases of hot-pressed samples.

<table>
<thead>
<tr>
<th>Starting materials</th>
<th>Designation of samples</th>
<th>Density (g/cc)</th>
<th>Phases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si3N4+Al(Oi-Pr)3</td>
<td>Z = 0.25</td>
<td>2.79</td>
<td>α′(s)=w(tr)=O′(w)</td>
</tr>
<tr>
<td></td>
<td>Z = 0.5</td>
<td>3.11</td>
<td>α′(s)=w′(w)</td>
</tr>
<tr>
<td>Si3N4+Al(Oi-Pr)3</td>
<td>Z = 0.75</td>
<td>3.10</td>
<td>α′(s)=w(tr)=X(tr)</td>
</tr>
<tr>
<td>Si3N4+α-Al2O3</td>
<td>Z = 1</td>
<td>3.10</td>
<td>α′(s)=w(w)</td>
</tr>
<tr>
<td></td>
<td>Z = 2</td>
<td>3.10</td>
<td>α′(s)=w(w)</td>
</tr>
<tr>
<td>Si3N4+α-Al2O3</td>
<td>Z = 0.25</td>
<td>2.77</td>
<td>β′(s)=w(w)</td>
</tr>
<tr>
<td></td>
<td>Z = 0.5</td>
<td>3.14</td>
<td>β′(s)=α(tr)</td>
</tr>
</tbody>
</table>

β′: β-Sialon
α′: α-Sialon
O′: Si3N4(s.s.)
X: X-phase

Fig. 2. Shrinkage observed during hot-pressing z=1 samples.

Fig. 3. Change of X-ray intensity ratio of z=1 powder from α-Si3N4+Al(Oi-Pr)3/THF with increasing temperature.
ず、1700℃からβ-サイアロン及びX相の生成が見られた。

表3にAl(Oi-Pr)₃とα-Si₃N₄及びα-Al₂O₃とα-Si₃N₄を出発原料として1850℃、300 kg/cm²の圧力下でホットプレスして得た各焼結体のかさ密度と生成相を示した。

z=0.25は、いずれの出発原料から得た焼結体もち密化が不充分で、かさ密度は約2.8 g/cm³（相対密度約88%）であった。z=0.5以上では、いずれも3.10〜3.14 g/cm³（相対密度98%以上）とち密な焼結体が得られたが、Al(Oi-Pr)₃を用いた焼結体より、α-Al₂O₃を用いた焼結体の方が高かった。図2に示したように、ホットプレス時の収縮は、Al(Oi-Pr)₃を用いた試料の方が到達密度の差から予想されるより大きいが、これは原料粉末の充てん密度の差によると考えられる。

Al(Oi-Pr)₃を用いた焼結体中の生成相は、z=0.25がβ-サイアロン、O' (Si₃N₄ (s.s. (Al₂O₃))) 及び微量のα-Si₃N₄、z=0.5がβ-サイアロン及びO'相、z=0.75がβ-サイアロン、微量のO'相及びX相、z=1及び2がβ-サイアロン及びX相であった。α-Al₂O₃を用いた焼結体は、z=0.25及び0.5がβ-サイアロン及び少量のα-Si₃N₄、z=0.75がβ-サイアロン、z=1がβ-サイアロン及び少量のX相となり、O'相の生成は見られなかった。

3.2 焼結体の組織
Al(Oi-Pr)₃を用いた焼結体とα-Al₂O₃を用いた焼結体の研磨面には明らかな差があった。すなわち、Al(Oi-Pr)₃を用いたz=0.5〜1の焼結体は、組織が均一で、α-Al₂O₃を用いた焼結体に見られた黒色の斑点部分（図4）がない。図5に、Al(Oi-Pr)₃及びα-Al₂O₃を用いたz=0.5の焼結体の腐食面の走査型電子顕微鏡（SEM）像を示す。両者とも、約0.5〜1μmのβ-サイアロン結晶粒からなるが、Al(Oi-Pr)₃から得た焼結体

Fig. 4. Optical micrograph of z=0.5 from α-Si₃N₄ + α-Al₂O₃.

(1) がほぼ均一な組織を示すのに対し、α-Al₂O₃から得た焼結体には、腐食処理により大きく取り除かれる部分（図5(2)）や、板状の粗大粒子（図5(3)）のような不均一な部分が多く認められた。

Al(Oi-Pr)₃を用いたz=2の焼結体は、z=0.5〜1の組織の焼結体と異なり、その表面には約50〜500μm程度の大きな斑点があった。これは、α-Si₃N₄に対してAl(Oi-Pr)₃の量が多いため、図1の加水分解の過程で水酸化物が蒸発して凝結し、そのまま焼結体中で不均一一部として残ったためである。図6にその斑点部分、矢印(A)で示した部分を拡大した組織（図6(A))及び矢印(B)の部分の拡大組織（図6(B))を示した。斑点の部分には周辺に比べ腐食されやすい部分が多いたか、板状の粒子が存在するなど特徴があった。

3.3 焼結体の曲げ強度
図7にAl(Oi-Pr)₃とα-Si₃N₄及びα-Al₂O₃とα-Si₃N₄を出発原料として得た各焼結体の曲げ強度を示した。

Fig. 5. SEM photographs of z=0.5 samples (polished and etched).
(1) From α-Si₃N₄ + Al(Oi-Pr)₃/THF,
(2) Pore formed by chemical etching in the sample from α-Si₃N₄ + α-Al₂O₃,
(3) Cluster of plates in the sample from α-Si₃N₄ + α-Al₂O₃.
Fig. 6. SEM photographs of $z=2$ from α-Si$_3$N$_4$+Al(Oi-Pr)$_3$/THF (polished and etched).

Fig. 7. Flexural strength vs. z-value.

$z=0.25$ は、いずれの出発原料を用いた焼結体も強度は低く、約 35 kg/mm2 であった。$z=0.5$ 以上では、Al (Oi-Pr)$_3$ を用いた焼結体では、z 値が小さくなるのに伴って強度は増加し、$z=0.5$ で平均 67 kg/mm2、最高 72 kg/mm2 に達した。α-Al$_2$O$_3$ を用いた焼結体では、$z=0.5$ 〜 1 まで約 50 kg/mm2 で一定であった。

3.4 焼結体の破壊面
図 8 に $z=1$ 組成の焼結体の破断面を光学顕微鏡写真で示した。
Al(Oi-Pr)$_3$ を用いた焼結体（図 8 (1)）はほとんど試片で、表面の加工痕と思われる部分から破壊が発生していた。α-Al$_2$O$_3$ を用いた焼結体（図 8 (2)）では、破壊体内部に存在した欠陥部分が破壊発生源となっている場合が多かった。

Fig. 8. Optical micrographs of fracture surface of $z=1$ samples.
(1) From α-Si$_3$N$_4$ + Al (Oi-Pr)$_3$/THF ($\sigma = 42.1$ kg/mm2).
(2) From α-Si$_3$N$_4$ + α-Al$_2$O$_3$ ($\sigma = 49.8$ kg/mm2).

4. 考察
4.1 焼結体の生成相について
Si$_3$N$_4$-Al$_2$O$_3$ 系焼結体の生成相については、Jack$^{[9]}$、小山ら$^{[10]}$、Gaukler ら$^{[11]}$、Drow ら$^{[12]}$ の報告がある。著者らは、Si$_3$N$_4$ に Al$_2$O$_3$ を 5 wt%, 10 wt%, 20 wt% 及び 30 wt% 添加し、1820℃ でホットプレスし
Fig. 9. Schematic representation of β-sialon-compositions10,17.

(1) 200 ml Al(Oi-Pr)$_3$を用いた場合、z = 0.75 以下の焼結体でO'相の生成が認められなかった。したがって本実験の場合、Al(Oi-Pr)$_3$を用いた場合、z = 0.75 以下の焼結体でO'相の生成が認められた理由として、(1) 出発原料中に含まれる酸素による生成の変化、(2) 加水分解及び解離操作中の、Si$_3$N$_4$の加水分解による酸素過剰側への酸素の変化、(3) 混合分散が均一に行われたことにより、状態図上の結晶相に近づいたこと、の3点が考えられる。

(1) 200 ml Al(Oi-Pr)$_3$を用いた場合、z = 0.75 以下の焼結体でO'相の生成が認められた理由として、(1) 出発原料中に含まれる酸素による生成の変化、(2) 加水分解及び解離操作中の、Si$_3$N$_4$の加水分解による酸素過剰側への酸素の変化、(3) 混合分散が均一に行われたことにより、状態図上の結晶相に近づいたこと、の3点が考えられる。

(1) 出発原料中に含まれる酸素による生成の変化については次のように考えられる。Al(Oi-Pr)$_3$は、表1に示したように、14.4 wt% のAlを含むが、Al(Oi-Pr)$_3$中のAlの計算値は13.2 wt%である。過剰のAlは、空気中の水蒸気によって加水分解して水酸化アルミニウムの形で存在しており、仮焼後はAl$_2$O$_3$に変化すると考えられる。したがってこの量を補正すると、Al(Oi-Pr)$_3$100 gは27.21 gのAl$_2$O$_3$に相当し、過剰のAl$_2$O$_3$だけ原料粉末の組成位置は、Al及び酸素過剰側にずる。しかし、z = 1 以下のAl(Oi-Pr)$_3$の量が少ない原料粉末は、その組成のずれはほとんど、z 値にして0.05以下である。図9にAl(Oi-Pr)$_3$中のAl及びSi$_3$N$_4$中の酸素を補正した各原料粉末の組成位置を、サイローム状態図上で示した。Al(Oi-Pr)$_3$を用いた原料粉末の組成位置における結晶相は、z = 0.25 及び0.5 でβ-サイローム及びO'相、z = 0.75 でβ-サイローム、O'相及びX相、z = 1 及び2 でβ-サイローム及びX相で、それぞれ表3に示した各焼結体の生成相と一致する。また、TriggらはSi$_3$N$_4$中のAl$_2$O$_3$の容積図をAl当量比で6%以下であるとし、状態図を示している15.この状態図上の各原料粉末の補正した組成位置における結晶相は、z = 0.75 以下でβ-サイロームとO'相である。これらのことから、出発原料による焼結体中の生成相の違いは、少なくとも、Al(Oi-Pr)$_3$中の過剰Alによる組成の変化によるものではないといえる。

(2) 200 ml Al(Oi-Pr)$_3$を用いた場合、z = 0.75 以下の焼結体でO'相の生成が認められた理由として、(1) 出発原料中に含まれる酸素による生成の変化、(2) 加水分解及び解離操作中の、Si$_3$N$_4$の加水分解による酸素過剰側への酸素の変化、(3) 混合分散が均一に行われたことにより、状態図上の結晶相に近づいたこと、の3点が考えられる。

(1) 出発原料中に含まれる酸素による生成の変化について、次のように考えられる。Si$_3$N$_4$のメタルアルコール中の水分による加水分解について菅野らは、アルコールSi$_3$N$_4$を含水率20.1 mol%のメタルアルコール中で20時間湿式粉砕した場合、2×10$^{-4}$ mol/gSi$_3$N$_4$のNH$_3$が生成したことを報告している16.この結果は、加水分解が(1)式のように進行するものとすれば、Si$_3$N$_4$表面に出0.009 g/gSi$_3$N$_4$のSi$_3$N$_4$が生成したことを示している。

Si$_3$N$_4$+6 H$_2$O → 3 SiO$_2$+4 NH$_3$

(1)

本実験におけるz = 1 組成の場合もこの割合でSi$_3$N$_4$が増加したとしても、混合粉末全体での酸素量の増加は、0.5 wt% 以下であり、加水分解及び解離操作による酸素量の増加はあまり大きくないと推定できる。更に、Al(Oi-Pr)$_3$を用いた場合、z = 1 組成の原料粉末中の酸素量を、レオ法により測定した結果は、10.6 wt% であった。z = 1 組成の混合粉末で、Al(Oi-Pr)$_3$中のAlがすべてAl$_2$O$_3$となったとして計算した酸素量は、混合粉末全体で、9.6 wt% であり、これにSi$_3$N$_4$中の酸素量を加えると、原料粉末中の酸素量は10.4 wt% となる。この値は分析結果とほぼ等しい。

これらの結果から、出発原料中の酸素量、加水分解及び解離操作によるSi$_3$N$_4$の加水分解等による混合粉末の組成の変化は極めて小さい。出発原料の違いによる焼結
体の生成相の差は，(3) の混合分散が均一に行われたことによる効果が大きいと考えられる。

Al(Oi-Pr)₃ を用いた粉末粉末では，ホットプレス時に，約 1350℃から収縮が始まり，一たんそれが止まった後，約 1650℃から急激な収縮が始まっている。図2に示した結果を考え合わせると，1350℃付近の収縮は，3 Al₂O₃・2 SiO₂ の収縮によるものと考えられる。表1に示したように，Si₃N₄ 中には 1.2 wt% の酸素が含まれている。この酸素は Si₃N₄ 表面で SiO₂ として存在すると考えられることで，Si₃N₄ 結晶粒と Al₂O₃ の接触が完全でなければ，Si₃N₄ 表面で 3 Al₂O₃・2 SiO₂ が生成すると考えられる。α-Al₂O₃ を用いた原料粉末では，約 1350℃での収縮及び 3 Al₂O₃・2 SiO₂ の生成は見られなかった。このことも Al(Oi-Pr)₃ を用いた方が，より均一な混合状態が得られることを示唆していると考えられる。

4.2 焼結体の組織とせん断強度について

Al(Oi-Pr)₃ 及び α-Al₂O₃ を用いた焼結体の強度は z = 1以下の組成で，Al(Oi-Pr)₃ を用いた焼結体の方が高い値を示した。このことは，組織及び焼結度の観察結果から，Al(Oi-Pr)₃ を用いた方が，焼結体の組織が均一化し，破壊発生源の不均質部分が少なくなったことを示す，と考えられる。

Al(Oi-Pr)₃ を用いた z = 2 の組成体の焼結体は著しく強度が低く，また，酸化処理によって大きく取り除かれる部分や，板状粒子の集合部分という不均質部分も図 6 に示したように，この焼結体が最も顕著に見られた。z = 2 の組成では Si₃N₄ : Al(Oi-Pr)₃ の重量比が 31.78 : 68.22 で，z = 1以下の組成に比べ Al(Oi-Pr)₃ が非常に多い。このために，加水分解中に生成した水酸化アルミニウムが，Si₃N₄ 粉末を取り込んだ状態で凝集し，今回の実験条件では十分な凝集を引き起こすことにより，不均質部分が生成したと考えられる。このことは，酸化処理によって大きく取り除かれる部分や，板状粒子の集合部分が，Al 及び酸素過剰の生成体として形成されることが示している。α-Al₂O₃ を用いた焼結体の中でも，図 5 に示したような不均質部分が多く見られる。これらの不均質部分もはやるに局的に Al 及び酸素過剰の生成体となった部分で形成したと考えられ，出発原料である α-Al₂O₃ の混合分散が不充分であったことを示唆している。

さらに，Al(Oi-Pr)₃ を用いて β-サイロインド焼結体を製造することにより，均質な組織をもと高強度の焼結体が得られたことが分った。しかし，z 値が 2以上になると，逆に不均質部分を導入する結果となり，強度は低下した。本実験の結果からは，高強度の焼結体を得るためには，組成を z = 0.5 〜 0.8 に調製することが望ましいと考えられる。

5. まとめ

Al(Oi-Pr)₃ 溶液中に Si₃N₄ 粉末を懸濁させ，それを加水分解，解離後乾燥し，空気中で 900℃，2 時間仮焼して z = 0.25，0.5，0.75，1 及び 2 の β-サイロインド焼結体の原料粉末を 1850℃，300 kg/cm²の圧力下で 1 時間ホットプレスし，得られた焼結体の組成，組織及び強度を調査して次の結果を得た。

(1) z = 0.5，0.75，1 及び 2 では密な焼結体が得られたが，z = 0.25 では相対密度 88% の焼結体となった。

(2) 焼結体の組成は z = 0.25 及び 0.5 で β-サイロインド + O₂，z = 0.75 で β-サイロインド + O₂+X，z = 1 及び 2 で β-サイロインド + X となった。

(3) 焼結体の組織は，約 0.5〜1 µm の β-サイロインド晶結質ならびに，α-Si₃N₄ と α-Al₂O₃ から得た焼結体で見られた組織の不均一はなかった。

(4) 焼結体は破壊面に，いずれも表面の加工作痕から破断した。

(5) 焼結体のせん断強度は，z = 0.5 で平均 67 kg/mm²（最高 72 kg/mm²），z = 1 で平均 48 kg/mm²（最高 56 kg/mm²）となったが，z = 2 では平均 14 kg/mm²となった。これは，加水分解時の水酸化アルミニウムの凝集による組織の顕著な不均一によるものであった。

文献