Phase Transition and Electrical Properties of VO$_2$(A)

Yoshio OKA, Tsukio OHTANI*, Naoichi YAMAMOTO and Toshio TAKADA*

Department of Chemistry, College of Liberal Arts and Sciences, Kyoto University,
Yoshidainohmonnatsu-cho, Sakyo-ku, Kyoto-shi, 606
*Department of Chemistry, Faculty of Science, Okayama University of Science, Ridai-cho, Okayama-shi, 700

VO$_2$(A) の相転移と電気的性質

岡 与志男・大 谷 榊 男*・山 本 直一・高 田 利 夫*

*京都大学教育学部化学教室, 606 京都市左京区吉田二本松町
**岡山理科大学理学部化学教室, 700 岡山市中区

VO$_2$(A), a metastable phase of VO$_2$, was prepared by hydrothermal treatment of an aqueous VOSO$_4$ solution. (VO$_2$(A) has tetragonal symmetry but the crystal structure remains unknown. DTA and magnetic susceptibility measurements revealed a transition at 162°C which was detectable on heating but not on cooling. Semiconducting behavior was observed and the high-temperature phase was characterized by lower electric resistivity. The transition on heating expanded the a-axis and contracted the c-axis. It was also observed that the lattice spacing along the c-axis was reduced to the half at the transition. The transition was found to be similar to the metal-insulator transition in the rutile-type VO$_2$.

[Received May 23, 1989; Accepted July 14, 1989]

Key-words: Vanadium dioxide, Hydrothermal synthesis, Metastable phase, Polymorph, Phase transition

1. Introduction

VO$_2$(A) is a metastable phase of vanadium dioxide in which the rutile-type structure (VO$_2$(R)) is adopted as a stable phase. The formation of VO$_2$(A) was first reported by Théobald1 in the extensive study of the hydrothermal synthesis of vanadium oxides and oxyhydroxides using mixtures of V$_2$O$_5$ and V$_2$O$_3$ as starting materials. He also obtained metastable VO$_2$(B), whose structure has been determined to be layer-type one related to the structures of V$_2$O$_5$ and V$_6$O$_{13}$.2 He showed that VO$_2$(A) had tetragonal symmetry with lattice parameters; $a=11.90$ Å and $c=7.68$ Å.1 But the structure of VO$_2$(A) remains unknown and also its physical properties have not been studied. To our knowledge VO$_2$(A) has not yet been obtained by any method other than the hydrothermal synthesis, while VO$_2$(B) has been prepared as an intermediate product in the thermal reduction of V$_2$O$_5$ by H$_2$, SO$_2$ and NH$_3$ gases.2-4

Among the polymorphs of VO$_2$, VO$_2$(R) is well known for the metal-insulator transition at 68°C accompanied by the lattice distortion from the rutile-type tetragonal structure of the high-temperature metallic phase to the monoclinic structure of the low-temperature insulating phase.5-7 The mechanism of the transition has been clarified that the paring of V$^{4+}$ ions (V$^{4+}$-V$^{4+}$ pair) along the c-axis of the rutile type takes place at the transition from metallic to insulating phase.8 As a result of the pairing, the lattice spacing of the c-axis of the rutile type doubles and the magnetic moment of V$^{4+}$ disappears. With reference to the phase transition of VO$_2$(R), stable phase VO$_2$, described above, it is worthwhile to investigate the structures and properties of metastable VO$_2$.

In the present work, VO$_2$(A) was prepared by the hydrothermal reaction starting from VOSO$_4$ aqueous solutions. The physical and structural properties of VO$_2$(A) were studied and it was found that VO$_2$(A) exhibited a phase transition which showed behavior similar to that of VO$_2$(R).

2. Experimental

The hydrothermal synthesis was conducted as follows. A VOSO$_4$ aqueous solution with a certain concentration was sealed in a pyrex tube and was treated at 200° to 280°C for various hours. Precipitates were separated by filtration and dried in air. Crystalline phases in the samples were identified by an X-ray diffraction method using Cu K$_{α}$ radiation. DTA were carried out in air at a rate of 10°C min$^{-1}$ by using an ULVAC TA-1500 thermal analyzer. Magnetic susceptibility was measured by a Faraday-type torque balance and electric resistivity by a dc four-probe method on powdered pressed pellets. High-temperature X-ray measurements were carried out using a JEOL
high-temperature attachment to control temperature within ±1°C.

3. Results and discussion

Figure 1 shows an X-ray diffraction pattern of VO₂(A) which is indexed based on the tetragonal symmetry as revealed by Théobald. The particle shape of VO₂(A) is of flat rectangular rod as shown in an SEM picture of Fig. 2. The flat surface of the rod is assigned to the a-plane, since h00 peaks became considerably higher for samples with well-grown particle. Figure 3 shows DTA curves of VO₂(A) on heating and cooling. An endothermic peak was observed at 162°C on heating while a corresponding exothermic peak was absent on cooling. This was reproducible for repeated heating cycles, indicating that some transition exists in VO₂(R) which is observable in the heating process. To confirm the existence of the transition in VO₂(A), the magnetic susceptibility was measured as shown in Fig. 4, where that of VO₂(R) is given in the inset for comparison. On heating the magnetic susceptibility showed sudden increase at 162°C and on cooling it gradually decreased to the starting value with a large hysteresis. It is noted that the change in the magnetic susceptibility on heating shows a striking resemblance to that of VO₂(R) shown in the inset of Fig. 4. Figure 5 shows the electric resistivity of VO₂(A). VO₂(A) exhibited semiconducting behavior over the temperature range of the measurement. It should be noted that the resistivity appeared rather high because it was measured on an as-pressed pellet of powder sample not sintered. The resistivity curve on heating showed a clear deflection at the transition indicating that the high-temperature phase becomes more conductive than the low-temperature phase. Also the activation energy estimated from the Arrhenius plot was lowered from 0.8 eV for the low-temperature phase to 0.65 eV for the high-temperature phase in the heating process.
This trend corresponds to the transition of \(\text{VO}_2 \) (R) on heating from insulator to metal. Consequently the presence of phase transition has been confirmed in \(\text{VO}_2 \) (\(\text{A} \)) and the changes in the magnetic and electric properties at the transition are quite similar to those of \(\text{VO}_2 \) (R) at the metal-insulator transition.

The transition from metallic to insulating phase in \(\text{VO}_2 \) (R) gives rise to the lattice distortion from tetragonal to monoclinic, and thus some structural change at the transition should be expected in \(\text{VO}_2 \) (\(\text{A} \)). Figure 6 shows the high-temperature X-ray diffraction patterns of \(\text{VO}_2 \) (\(\text{A} \)) on heating.
The X-ray patterns below and above the transition temperature were almost the same except that the hkl reflections with odd l, e.g., 131 and 241 marked by arrows in Fig. 6, disappeared in the high-temperature phase. It indicates that the crystal structure does not change drastically but the lattice spacing along the c-axis becomes the half through the transition. Another feature appeared in the peak profile of $h00$ reflections as shown in Fig. 7 for 600 peak. That is, the top of the peak became flat around the transition temperature suggesting that the array of V^{4+} ions along the a-axis becomes somewhat irregular at the transition. Figure 8 shows the temperature dependence of the lattice parameters of VO$_2$(A), where that of VO$_2$(R) is presented in the inset for comparison. In Fig. 8 the c-axis of the high-temperature phase is assumed to be unchanged from that of the low-temperature phase for convenience. At the transition on heating, the a-axis expands while the c-axis contracts. It is also seen that the c-axis tends to decrease above the transition temperature. Let the a- and c-axis of VO$_2$(A) correspond to the a- and c-axis of the rutile structure of VO$_2$(R), respectively, we find that this behavior through the transition appears to be quite similar to that of VO$_2$(R). As is seen in the inset of Fig. 8, the a- and c-axis of the rutile structure expands and contracts, respectively, at the transition. The a-axis of the monoclinic structure becomes the half through the transition connecting to the c-axis of the rutile structure. Moreover the c-axis of the rutile structure tends to decrease above the transition temperature.

The present study has revealed the transition in VO$_2$(A) which exhibits behavior similar to that of the metal-insulator transition of VO$_2$(R) in both physical and structural properties. Thus it is considered, in analogy with the case of VO$_2$(R), that the V^{4+}-V^{4+} paring along the c-axis may occur in the low temperature phase of VO$_2$(A) resulting in the non-magnetic and lower conductive phase. The features of the transition in VO$_2$(A) in contrast to that in VO$_2$(R) are that the transition is observable on heating not on cooling, the transition is not accompanied with lattice distortion, and the high-temperature phase does not become metallic. Since the DTA peak of VO$_2$(A) is considerably smaller than that of VO$_2$(R), the transition of VO$_2$(A) seems to be so faint that the lattice distortion and the change into the metallic phase are difficult to occur. Unfortunately, the crystal structure of VO$_2$(A) still remains unknown. Further study to determine the crystal structure of VO$_2$(A) is in progress to elucidate the exact mechanism of the transition with reference to the metal-insulator transition of VO$_2$(R).

Acknowledgement The authors wish to thank Professor K. Kosuge and Dr. Y. Ueda of Kyoto University for helpfull discussions. The present work was partially supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture.

References