Influences of Additives on Superconducting Properties and Crystallization Process of Bi-Sr-Ca-Cu-O Glass-Ceramics

Hiroyuki NASU and Yoshikazu IBARA*

Department of Industrial Chemistry, Faculty of Engineering, Mie University, Kamihama-cho, Tsu-shi 514
* Department of Electrical Engineering, Faculty of Engineering, Hiroshima University, Saijo-cho, Higashi-Hiroshima-shi 724

Bi-Sr-Ca-Cu-O系ガラスセラミックスの超伝導特性と結晶化過程に関する添加物の影響

The influences of additives such as Pb or Sb on the superconducting properties and crystallization process of Bi-Sr-Ca-Cu-O glass-ceramics were investigated. \(T_c \) (end) was influenced only by Pb, but not by K, Na, Sn, Sb or Li. The addition of Pb increased \(T_c \) (end) above 100 K. The results of differential thermal analysis and X-ray diffraction analysis showed that the addition of Pb, Sn or Pb and Sb enhanced crystallization of the superconducting phases, but no clear exothermic crystallization peak was observed in the samples containing K or Na oxide.

Key words: High-\(T_c \) superconduction, Bi-Sr-Ca-Cu-O system, Glass-ceramics, Influences of additives, Crystallization process, Differential thermal analysis

1. Introduction

Since Bednorz and Muller first reported on the La-Ba-Cu-O system as a potential high-\(T_c \) superconducting oxide,\(^{17,18}\) many studies aiming to find high-\(T_c \) superconducting oxides have been carried out.\(^{2-4}\) Consequently, Bi-Sr-Ca-Cu-O and Tl-Ba-Ca-Cu-O with \(T_c \) (end) >100 K was reported.\(^{3,4}\) In particular, Bi-Sr-Ca-Cu-O system has been extensively studied on account of its low toxicity, but this material frequently contains some other superconducting phases, resulting in a \(T_c \) (end) below 90 K.\(^{5,6}\)

As indicated in the previous papers,\(^{7,8}\) some compositions of the Bi-Sr-Ca-Cu-O system are glass-forming, and they show superconducting transition after proper annealing.\(^{7-15}\) However, the \(T_c \) (end) for the samples annealed from the completely glassy state can not be currently above 100 K in Bi-Sr-Ca-Cu-O glass-ceramics without any additives to the best of the authors' knowledge. Recently, Takano et al.\(^{16}\) discovered the usefulness of the addition of PbO to produce the mostly single high-\(T_c \) phase (\(T_c \) (end) >100 K) of bulk Bi-Pb-Sr-Ca-Cu-O. On the other hand, Endo et al.\(^{17}\) noticed the significant role of the partial pressure of oxygen during annealing in eliminating low-\(T_c \) phases, and likewise obtained single high-\(T_c \) phase bulk specimens. From our previous work on Pb added Bi-Sr-Ca-Cu-O glass-ceramics, the addition of Pb were proved to be likewise useful, and the heat-treatment under low oxygen partial pressure was also necessary to increase \(T_c \) (end) above 100 K (\(T_c \) (end) =102 K) for superconducting glass-ceramics. This work reports the influences of the various additives including Pb on superconducting properties and crystallization process of the superconducting glass-ceramics.

2. Experimental procedure

Commercially available, analytical grade Bi\(_2\)O\(_3\), SrCO\(_3\), CaCO\(_3\) and CuO were weighed out to the nominal compositions of BiSrCaCu\(_2\)O\(_x\), and Sb\(_2\)O\(_3\), PbO, Li\(_2\)CO\(_3\), Na\(_2\)CO\(_3\), K\(_2\)CO\(_3\) and mixed PbO and Sb\(_2\)O\(_3\) were added in ratios of 0.1. The ratio of the additives was determined from the case for the highest \(T_c \) (end) in the PbO added Bi-Sr-Ca-Cu-O (BSCCO) glass-ceramics. The powders were mixed and melted in platinum crucibles at 1150°C for 30-40 min in an electric furnace in air. The melts were poured onto a stainless steel plate and pressed quickly. The obtained samples were annealed at 840°C for 150 h in Ar : O\(_2\) = 12 : 1 and cooled down in the furnace. The thickness of the quenched samples was approximately 0.0 mm.

The temperature dependence was measured by a four-point probe technique at a constant dc
current. The resistivity at each temperature was measured for two opposite current directions, and superconducting transition curves were obtained from the mean values of the both increase and decrease of temperature procedures.

X-ray diffraction (XRD) patterns of samples without powdered were recorded by a JEOL JDX-10 X X-ray diffractometer from 2θ=3° to 40°. Differential thermal analysis (DTA) was carried out by means of the Rigaku TG-DTA CN 80716 E1 at a heating rate of 20°C/min from room temperature to 1100°C in air.

3. Results and discussion

Figure 1 shows some typical XRD patterns of as-quenched samples. As one can see, as-quenched samples except Na- or K-doped samples are amorphous by XRD. The electric properties of the as-quenched state for the current samples were insulating, and no superconducting transition could be seen above 10 K.

Figures 2 (1) and (2) show the differential thermal analysis (DTA) curves for the present systems. The results can be divided into two groups although the amount of the additives was only 2 mol% of cations. One has detectable glass transition temperature (T_g), one or two exothermic peaks around 550°C, and broad endothermic peak before the melting point. The other, in specific, Na- or K-doped samples, has no detectable glass transition temperature, one endothermic peak near 530°C, but has the similar thermal reaction above 600°C. The addition of Pb, Li, Sn or Pb, Sb lowered T_x compared to non-doped glass-ceramics, presumably enhancing atomic rearrangement. Practically, two exothermic peaks due to crystallization were observed for these samples, while only one peak was seen for non-doped.

The XRD measurements were carried out for all of the specimens after annealed just above the thermal reaction taking place and 800°C in air. Figures 3 (1), (2), and (3) correspond to XRD patterns of non-doped, Pb-doped and Pb, Sb-doped glass-ceramics. In Fig. 3 (1), three relatively intense peaks are detectable after annealed at 600°C, and those can be assigned to...
very low-T_c phase ($T_c(\text{end}) \sim 10$ K) or (Sr, Ca)$_3$Cu$_5$O$_x$-like crystal phase. Hereafter, this phase will be named as phase A. Besides of the phase A, CuO, Cu$_2$O and CaO were also formed. After annealing to 800°C, phase A was transformed to low-T_c phase ($T_c(\text{end}) \sim 75$ K). Fig. 3 (2) shows the XRD patterns of a Pb-doped sample annealed at 570°C, and 800°C from the top to the bottom, respectively. Compared to Fig. 3 (1), the peaks of the phase A were sharpened and even the number of the peaks was increased.

Figures 4 (1), (2), (3), and (4) are XRD patterns of Li-doped, Na-doped, K-doped and Sn-doped BSCCO glass-ceramics after heated just above the thermal reactions taking place or at 800°C in air, respectively. In Fig. 4 (1), the formation of phase A was observed at 570°C, and the pattern itself was similar to the non-doped after annealed at 620°C. Figures 4 (2) and (3) show XRD data for Na- and K-doped glass-ceramics, respectively. For these samples after heated at 570°C, phase A was mainly formed, but, in particular for K-doped specimen, the peaks were broad and weak compared with others. Since the as-quenched bodies contained crystal particles, the endothermic peak in DTA might be caused by the conversion of the original crystal phases to others seen in Fig. 4. Moreover, Fig. 4 (3) indicates the addition of K even disturbs the crystal growth of phase A, most likely by the ionic diffusion. From Fig. 4 (4), one can say the influence of the Sn doping is similar to those
Fig. 4. (1) XRD patterns of Li-doped glass-ceramics after heated at 570°C (top), 620°C (middle), and 800°C (bottom). The peaks of phase A (\((\text{Sr}, \text{Ca})_2\text{Cu}_5\text{O}_x\)-like or the very low-\(T_c\) phase), the low-\(T_c\) phase, CuO, Cu_2O, and CaO are shown by crosses, open triangles, open squares, solid triangle, and solid squares, respectively.
(2) XRD patterns of Na-doped glass-ceramics after heated at 570°C (top) and 800°C (bottom). The peaks of phase A (\((\text{Sr}, \text{Ca})_2\text{Cu}_5\text{O}_x\)-like or the very low-\(T_c\) phase), the low-\(T_c\) phase, CuO, Cu_2O, and CaO are shown by crosses, open triangles, open squares, solid triangle, and solid squares, respectively.
(3) XRD patterns of K-doped glass-ceramics after heated at 570°C (top), 620°C (middle), and 800°C (bottom). The peaks of phase A (\((\text{Sr}, \text{Ca})_2\text{Cu}_5\text{O}_x\)-like or the very low-\(T_c\) phase), the low-\(T_c\) phase, CuO, Cu_2O, and CaO are shown by crosses, open triangles, open squares, solid triangle, and solid square, respectively.
(4) XRD patterns of Sn-doped glass-ceramics after heated at 570°C (top), 620°C (middle), and 800°C (bottom). The peaks of phase A (\((\text{Sr}, \text{Ca})_2\text{Cu}_5\text{O}_x\)-like or the very low-\(T_c\) phase), the low-\(T_c\) phase, CuO, Cu_2O, CaO, and unknown are shown by crosses, open triangles, open squares, solid triangle, solid square, and "*" marks, respectively.
Fig. 5. (1) XRD patterns of non-doped (1), Pb-doped (2), K-doped (3) and Na-doped (4) BSCCO glass-ceramics after heated at 840°C for 150 h in Ar : O₂ = 12 : 1 atmosphere. The peaks of the high-\(T_c\) phase, low-\(T_c\) phase, CuO and unknown phase are shown by open circles, open triangles, open squares and "*" marks, respectively.

(2) XRD patterns of Li-doped (5), Sn-doped (6) and Pb, Sb-doped (7) BSCCO glass-ceramics after heated at 840°C for 150 h in Ar : O₂ = 12 : 1 atmosphere. The peaks of the low-\(T_c\) phase, CuO and unknown phase are shown by open triangles, solid triangles and "*" marks, respectively.

Fig. 6. (1) Temperature dependence of dc resistance of the derived non-doped (open circles), Pb-doped ("*" marks), K-doped (open squares) and Na-doped (open triangles) BSCCO glass-ceramics. The resistance was shown as \(R(T)/R(300\text{ K})\), where \(R(T)\) is the resistance at \(T\text{ K}\) and \(R(300)\) is that at 300 K.

(2) Temperature dependence of dc resistance of the derived Li-doped (open circles), Sn-doped (open squares) and Pb, Sb-doped (open triangles) BSCCO glass-ceramics. The resistance was shown as \(R(T)/R(300\text{ K})\), where \(R(T)\) is the resistance at \(T\text{ K}\) and \(R(300)\) is that at 300 K.

Figures 5 (1) and (2) correspond to the XRD patterns of each glass-ceramics after heated at 840°C for 150 h in Ar : O₂ = 12 : 1 atmosphere. For non-doped glass-ceramics, predominant phase was the low-\(T_c\) phase and small amount of CuO. The high-\(T_c\) phase (\(T_c\text{ (end)} = 105\text{ K}\)) was observed in Pb-doped BSCCO glass-ceramics (Fig. 5 (1)). The approximate concentration of the high-\(T_c\) phase was 65% estimated from (002) reflection lines. The predominant phase in others was the low-\(T_c\) phase, but some differences can be seen among them. The preferential orientation of crystalline phase can be noticed in K- or Li-doped glass-ceramics. For both samples, (00\(n\)), where \(n\) is integer, reflection lines were rather intense compared to others, and thus c-axis
of the superconducting phase preferentially oriented to the pressed direction in quenching. On the other hand, (11\textit{n}) and (\textit{n} 00) reflection lines of Na-doped and Pb, Sb-doped glass-ceramics were pointed out. Compared to non-doped glass-ceramics, the addition of oxides with relatively low melting point may greatly influence the crystal growth mechanism in amorphous state. For Sn-doped glass-ceramics, some peaks from unknown impurity phase were found even heated in low oxygen atmosphere at 840°C, and no (002) reflection line could be detected.

Figures 6 (1) and (2) show temperature dependence of dc conductivity for each glass-ceramics after heated at 840°C in Ar : O\textsubscript{2} = 12 : 1 atmosphere for 150 h. For non-doped glass-ceramics, \(T_c\) (onset) was 90 K and \(T_c\) (end) was 78 K, and no drastic drop of the resistance could be seen above 100 K. Thus, even from electric properties, no formation of high-\(T_c\) phase could be seen. The Pb addition increased \(T_c\) (onset) and \(T_c\) (end) to 120 K and 102 K, respectively. To the best of the authors' knowledge for BSCCO glass-ceramics, these are the highest values, and 78 K, 90 K and 78 K, 92 K and 79 K, and 90 K and 75 K, respectively, and no drop in the resistance could be seen above 100 K. Therefore, no high-\(T_c\) phase formation could be found even from the electrical properties. On the other hand, two steps in the superconducting transition were noticed in Pb, Sb-doped glass-ceramics (6)). \(T_c\) (onset) was 114 K and \(T_c\) (end) was 75 K. Thus, the some portion of the glass-ceramics was proved to be the high-\(T_c\) phase. The first drop correspond to 50% of the total drop of the resistance in the transition, but no new super high-\(T_c\) phase (\(T_c\) (end)>120 K) could be found.

4. Conclusion

(1) Among the present samples, non-doped, Pb-doped, Li-doped, Sn-doped and Pb, Sb-doped system were glass-formable.

(2) From DTA studies, two exothermic crystallization peaks were found for Pb, Pb, Sb, Li- or Sn-doped glass-ceramics just above \(T_c\), where one endothermic peak were observed for Na- or K-doped.

(3) The main crystal phase formed near 550°C and 800°C were phase A and the low-\(T_c\) phase, but the crystallinity was dependent on the additives. In specific, Pb, Sn, and Pb, Sb seem to enhance crystallization of phase A, while K seems to retard it.

(4) Crystal orientation was likewise largely influenced by the additives.

(5) Regarding on the superconducting transition, only Pb-doped BSCCO glass-ceramics had relatively large portion of high-\(T_c\) phase with \(T_c\) (end) above 100 K (102 K), and Pb, Sb-doped glass-ceramics showed two steps of the transition, resulting from the partial formation of the high-\(T_c\) phase. On the other hand, for non-doped and other oxides-doped glass-ceramics, the superconducting transition was predominantly determined by the low-\(T_c\) phase, and thus no remarkable influences could be seen on \(T_c\) (end).

Acknowledgment The authors are grateful to Prof. Y. Osaka, Department of Electrical Engineering, Faculty of Engineering, Hiroshima University, and Prof. K. Kamiya, Department of Industrial Chemistry, Faculty of Engineering, Mie University for stimulating discussions, and to Prof. M. Hattori, Department of Applied Chemistry, Faculty of Engineering, Hiroshima University, for helping with the measurements.

References