Study of the morphotropic phase boundary in the lead-free Na$_{1/2}$Bi$_{1/2}$TiO$_3$–BaTiO$_3$ system by Raman spectroscopy

Dibyaranjan ROUT,1 Kyoung-Seok MOON, V. Shankar RAO and Suk-Joong L. KANG1

Materials Interface Laboratory, Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea

Lead-free piezoelectric (100–x)Na$_{1/2}$Bi$_{1/2}$TiO$_3$–xBaTiO$_3$ solid solution ceramics are investigated by Raman spectroscopy and X-ray diffraction over a composition range of 0 ≤ x ≤ 10. Distinct changes in the Raman spectra and X-ray diffraction patterns were discussed in the light of a rhombohedral to tetragonal phase transition. The dominant bands in the Raman spectra were analyzed by observing the changes in their respective peak positions, widths and intensities as the composition increased. Based on these results, it is suggested that the morphotropic phase boundary in the studied system lies at the composition of x = 5.5. This is further evidenced by the X-ray diffraction analysis.

Key-words : Lead-free piezoelectric, MPB, Raman spectroscopy

[Received October 20, 2008; Accepted April 16, 2009]

1. Introduction

In last few decades, the most widely used piezoelectric ceramics are lead oxide based ferroelectrics, especially Pb(ZrTi)O$_3$ (PZT). PZT exhibits outstanding piezoelectric properties close to a morphotropic phase boundary (MPB) between rhombohedral and tetragonal phases. However, in recent years, lead-free ceramics with excellent electrical properties are of great interest as environmental friendly alternatives to the lead containing piezoelectric materials. Na$_{1/2}$Bi$_{1/2}$TiO$_3$ (NBT) related materials have been considered as one of the promising candidates for the replacement of lead-based piezoelectric ceramics on account of their potential electromechanical properties.

The peculiar phase transition behavior of NBT has also attracted significant attention from a fundamental point of view. It undergoes transitions from a paraelectric (PE) cubic phase to a ferroelectric (FE) tetragonal phase and then to a rhombohedral relaxor ferroelectric (RFE) phase. Compared to lead-based RFEs, the diffuse phase transition in NBT is associated with global structural changes. A number of studies have been carried out; however, several contradictory explanations have been reported for the interpretation of different structural and dielectric anomalies observed in each phase. In the process of understanding the phase transition behavior and subsequently to improve the properties, several NBT-based solid solutions have been developed. Among them, the (100–x)Na$_{1/2}$Bi$_{1/2}$TiO$_3$–xBaTiO$_3$ (NBT–BT) system exhibits excellent piezoelectric properties at the rhombohedral-tetragonal MPB. It was anticipated that the structure of the solid solution with a low BT content would become tetragonal due to the rather large lattice distortion of BT compared to the rhombohedral distortion in NBT. Although this structural modification was confirmed in earlier works, the exact composition of the MPB remains unclear.

Takenaka et al. observed relatively good piezoelectric properties

1 Corresponding author: S.-J. L. Kang; E-mail: sjkang@kaist.ac.kr
2 Corresponding author: D. Rout; E-mail: dibyaranjan@yahoo.co.in

©2009 The Ceramic Society of Japan.
the sintered samples were examined using a SWXD X-ray diffractometer (Rigaku Co., Japan). For the Raman spectroscopic study, the sintered pellets were polished on one side using diamond paste and then cleaned thoroughly with acetone. The samples were subsequently annealed at 400°C for 8 h to remove the residual surface stress left from polishing. Raman spectra were recorded at room temperature in back scattering geometry with a Horiba–Jobin–Yvon HR800 spectrometer equipped with a liquid N2-cooled back thinned charge couple device (CCD) detector. The output power of the Ar-ion laser operated at 514.5 nm was set at 2.5 mW. The results were analyzed by fitting the spectra to the Lorentzian line shape using the Jandel peak fit program.

3. Results and discussion

As mentioned earlier, NBT has rhombohedral symmetry with space group R3c (C6vR) and BT has tetragonal symmetry with space group P4mm (C4v) at room temperature. As far as BT is concerned, in the tetragonal ferroelectric phase of the C4v point group, each of the T4u modes splits into a double degenerate E mode and non-degenerate A1 mode while the T3u silent mode splits into B1 + E modes. All the A1 and E modes are Raman and infrared active and the B1 mode is only Raman active. Furthermore, the existence of long-range electrostatic forces in the tetragonal ferroelectric phase splits each of the A1 and E modes into longitudinal and transverse modes. However, in the present case most of the analysis has been done with respect to the rhombohedral symmetry of NBT. As per the Group theory analysis, NBT (rhombohedral, R3c) should show 13 Raman active modes; in irreducible representation I_{Raman} = 7 A1 + 6E.15)

Before discussing the spectral changes in detail, it is useful to inspect the spectra of the end compositions of the present study. Figure 1(a) shows the Raman spectra of the NBT and NBT–10BT along with the curves fitted to the individual Raman peaks. The overall spectral signature demonstrates a relatively broad feature; which is in good agreement with previous reports. This can be attributed to the A-site disorder and the overlapping of Raman modes due to the lattice anharmonicity. Moreover, some Raman active modes are also infrared active; thus, their frequency depends on their longitudinal and transverse character that lead to a broadening of the bands in the polycrystalline samples.

The spectra of NBT–10BT show two additional peaks at 188 (relatively weak) and 325 cm^{-1} (strong) compared to the peaks at 138, 256, 514 and 581 cm^{-1} observed for NBT. Moreover, the high frequency overlapping bands in the range of 450–650 cm^{-1} separated into two relatively prominent peaks. The features clearly demonstrate a change in the phonon behavior in the NBT–BT solid solution. Figure 1(b) shows the Raman spectra in a frequency range 50–700 cm^{-1} for various compositions. A significant change in the spectral signature is observed at the composition x = 5.5, as indicated by the dotted lines in the figure. For a closer inspection, the variations of the peak frequency, FWHM and intensity of individual peaks with composition are plotted in Fig. 2. The mode at 138 cm^{-1} assigned to A1 symmetry, which is associated with the Na–O vibration, shifts to a lower frequency as the Ba concentration increases.17)

The low frequency shift can be attributed to the larger mass of Ba compared to Na. However, the mode reveals a sudden drop in the frequency around the composition of x = 5.5 and then remains mostly unchanged. The mode intensity and FWHM undergo a slope change around the same composition. The broad band centered at 256 cm^{-1} is assigned to the A1 symmetry which is dominated by a Ti–O vibration.15) The mode shows an anomaly at x = 5.5 and starts splitting into two bands that shift apart from each other with a further increase in x. At a higher composition the band appears to split into three peaks (the third peak is indicated by the arrow in Fig. 1(b) but is not included in Fig. 2). Similar observations are found in BaTiO3 and PbTiO3 compounds in earlier reports.18,19) The negative frequency shift and the anomaly observed for this mode suggest that this particular phonon is directly involved in the structural phase transition.

The two overlapping bands associated with the vibration of the TiO6 octahedra in the frequency range of 450–650 cm^{-1} show a hard mode type behavior as the composition increases. However, the spectral signature of the bands show a change at a composition of x = 5.5 and then separate into two distinct bands at higher compositions.14,15) The variations of the intensity and the FWHM of all peaks show a similar type of anomaly at a composition of x = 5.5. Therefore, it can be suggested that the MPB of the NBT–BT in the present investigation lies at the composition of x = 5.5.

The NBT–10BT samples were further investigated by X-ray diffraction to give insight into the change in their crystal structure as the BT content increases and to provide subsequent verification of the Raman scattering results. The variations of the {100}, {111} and {200} peaks with the composition are shown separately in Fig. 3. The shift of the peaks to a lower angle indicates an increase in the lattice parameter with an increase in the BT content. This can be explained by the higher ionic radii of Ba^2+ compared to Na^+ and Bi^3+. The pattern reveals the characteristic rhombohedral split in the {111} peak at lower compositions and a tetragonal split in the {200} peak at higher compositions. This is a clear demonstration that the structure of the solid solution transformed from rhombohedral to tetragonal symmetry due to the large distortion caused by BT. The shift in the {111} peak gradually decreases to a composition of x = 5.5 and, then disappears. However, significant broadening is observed at x = 5.5. The broadening of the peaks decreases at x ≥ 5.5. Conversely, a clear tetragonal split can be observed in {100} and {200} at x ≥ 5.5 which indicates that the symmetry should be tetragonal above the stated composition.
The results obtained from the Raman spectroscopy and X-ray diffraction are complimentary to each other. Therefore, in light of the present observations, it can be said that the MPB of the NBT–xBT solid solution lies at the composition of $x \approx 5.5$. The MPB compositions determined for this system using different experimental techniques by various other groups are mentioned in the introduction. Referring to the previously reported results, it is found that our results are in good agreement with the work of Chiang et al. ($x = 5.5$)\(^4\) and are very close to the results reported by Takenaka et al. ($x = 5.5$)\(^3\) and Hosono et al. ($x = 5–9$).\(^12\) Nevertheless, Chu et al. reported higher values of piezoelectric properties at $x = 6$\(^10\) and Pengpat et al. observed the MPB at $x = 10$.\(^11\)

The discrepancies observed in determining the exact MPB composition of the NBT–BT solid solution system between our results and those previously reported may be related to different preparation methods or processing parameters employed by different groups. For example, Chiang et al. used single crystals of NBT–BT samples, whereas Takenaka et al.\(^3\) and Hosono et al.\(^4\) used ceramic samples prepared by the conventional method at different sintering temperatures. Moreover, Pengpat et al.\(^11\) added 1.7% of La\(^{3+}\) at the A-site and Chu et al.\(^10\) used Nb\(_2\)O\(_5\) and Co\(_2\)O\(_3\) as additives for some selected compositions during the preparation of NBT–BT samples.

4. Conclusion

The rhombohedral-tetragonal morphotropic phase boundary in NBT–xBT solid solution ceramics was investigated by Raman spectroscopy in this study. The characteristic bands in the Raman spectra were analyzed in terms of the wave number, intensity and FWHM as the BT concentration increased. The low frequency mode at 138 cm$^{-1}$ shows an anomaly at the composition of $x = 5.5$. The mode centered at 256 cm$^{-1}$ associated with the structural phase transition starts splitting into two at $x = 5.5$ and later splits into three peaks, which is a clear demonstration of a rhombohedral to tetragonal phase change. The high frequency overlapping mode shows a hard mode like behavior. It also shows an anomaly at the same composition, of $x = 5.5$. These features allow us to propose that the MPB in the present system lies at the composition, of $x = 5.5$. This phenomenon is further verified thorough X-ray diffraction by a thorough inspection of the variations of the structure sensitive Bragg peaks of \{111\} and \{200\}.

Acknowledgement

This research was supported by a grant from the Center for Advanced Materials Processing (CAMP) of the 21st Century Frontier R&D Program funded by the Ministry of Knowledge Economy (MKE), Republic of Korea under Grant No. PM007–8–01–01, and also by a Korea Research Foundation Grant funded by the Korean Government (MOEHRD) (KRF–2005–005–J09701).
References
