Journal of the Ceramic Society of Japan
Online ISSN : 1348-6535
Print ISSN : 1882-0743
ISSN-L : 1348-6535
Papers
Crystallization and ferroelectric properties of the amorphous precursor films of Poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) blended with Pb(Zr,Ti)O3
Wan-Gyu LEEByung Eun PARKKyung Eun PARK
Author information
JOURNAL FREE ACCESS

2012 Volume 120 Issue 1402 Pages 224-228

Details
Abstract

Precursor films based on poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) and P(VDF-TrFE) blended with Pb(Zr,Ti)O3 (PZT) were spin-coated on Si substrates and subsequently annealed at 150, 170, or 190°C. X-ray diffraction studies showed that the crystallization from the amorphous precursor films to the γ phase starts at higher annealing temperatures without involving the formation of other polymorphs when the P(VDF-TrFE) is blended with PZT, and the PZT content increases, resulting in an amorphous phase and/or crystalline γ phase. Nevertheless, a larger memory window width and much higher accumulation capacitance are induced by the blended PZT within the low operating voltage ranges from −0.5 to 2.0 V and from −2.0 to 6.0 V for 76.7 and 96.7 wt % PZT blending, respectively. Furthermore, these improvements in the hysteretic characteristics in the capacitance–voltage measurements are also directly correlated with the degree of P(VDF-TrFE) crystallization and the presence of PZT. This approach enables viable routes toward the commercialization of nonvolatile ferroelectric memory devices and their market extension to potential applications as functional devices.

Content from these authors
© 2012 The Ceramic Society of Japan
Previous article Next article
feedback
Top