Fabrication of laminated Ti/Al₂O₃ composite by vacuum hot-pressing sintering

Chao WU,* Zhi WANG,*¹ Qinggang LI,*² Guopu SHI,* Yan MA* and Luhao LIU*

¹School of Material Science and Engineering, University of Jinan, Jinan 250022, China
²Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, School of Materials Science and Engineering, University of Jinan, Jinan 250022, China

Laminated Ti/Al₂O₃ composite was fabricated by tape casting with close control of thickness (about 200 μm) of Al₂O₃ and titanium layers. The green tapes of titanium and Al₂O₃ were prepared at room temperature due to high flexibility and strength. In order to improve the density of green layers, the binder removal temperature range of titanium and Al₂O₃ layers was investigated by differential scanning calorimeter (DSC/TG). The compact laminated Ti/Al₂O₃ composite sintered by vacuum hot-pressing at 1450°C for 60 min under pressure of 25 MPa was researched by X-ray diffraction and scanning electron microscopy (SEM) equipped with energy dispersive X-ray analysis (EDX). The results showed an obvious diffusion region between Al and Ti layers, and the interfacial phases were composed mostly of Ti and Al₂O₃, together with a little amount of Ti₃Al, TiAl and Al₃Ti₂, and solid solution of O (AlTiO₂). Diffusion line of EDX spectrum indicated that the diffusion distance of dissociated Al³⁺ in Ti layers was about 5 μm.

Key-words: Laminated ceramic composite, Ti/Al₂O₃, Tape casting, Interfacial reaction

1. Introduction

Ti/Al₂O₃ composite is identified as promising materials for biology, aerospace, cutter and many other applications.¹⁻³ In recent years, Ti/Al₂O₃ have triggered tremendous interests among researchers in various preparation methods, which includes vacuum normal-pressure sintering, vacuum hot pressed sintering, self-propagating high-temperature synthesis (SHS), spark plasma sintering (SPS) and laser sintering (LS). Because of well physical and chemical compatibility between Ti and Al₂O₃, the most of properties of Ti/Al₂O₃ composite are superior to monolithic Ti and Al₂O₃ materials. However, the lack of damage tolerance ability constrains the application of Ti/Al₂O₃ composite.⁴⁻⁶ As it is reported, in sintering process, Al³⁺ tends to diffuse from Al₂O₃ to Ti and react with Ti to form inter-metallic compounds, which is the main reason leading to decrease of strength.⁷⁻⁸ Accordingly, the discussion of interfacial reaction and products between Ti and Al₂O₃ is key point.

Laminated structural material has been reported in metal, polymer and ceramic fields, such as laminated SiC, Si₃N₄ and Al₂O₃.⁹⁻¹³ According to the descriptions of many reports, laminated structure improved mechanical properties of materials due to deflect crack to consume more fracture energy.¹⁴⁻¹⁶ Chen obtained Ni/Al₂O₃ successfully and tested its toughness and strength by different sintering methods.¹⁷ At present, laminated Ti/Al₂O₃ composite prepared by tape casting has been rarely investigated. In the present work, alcohol-based tape casting method was used to produce green layers of Ti and Al₂O₃, Laminated Ti/Al₂O₃ composite was obtained by vacuum hot-pressing sintering technology. The interfacial reaction products and diffusion distance of interfacial elements were investigated by X-ray diffraction (XRD) and energy dispersive spectrometer (EDX).

2. Experimental procedure

Figure 1 shows the preparation of laminated Ti/Al₂O₃ composite. Firstly, the sol of 5 wt% PVB (Polyvinyl Butyral) dissolved by ethanol, and plasticizing agent of 5 wt% PEG2000 (Polyethylene Glycol) and powders of 20 wt% Ti (or Al₂O₃) were mixed in the sol and dispersed by ultrasonic for 2 h, respectively. Secondly, the mixed sol was put on tape casting mould at room temperature for 6 h. Then, the green gels were cut into slices and stacked separately to remove binder at 650°C for 2 h. Finally, the laminated sample was sintered by vacuum hot-pressing furnace (VVPgr-80-2300, China) at 1450°C for 60 min under an applied pressure of 25 MPa.

In order to determine the removal temperature range of PVB, TG/DSC (METTER TOLEDO TGA/DSC 1, Switzerland) was performed.

![Fig. 1. Schematic diagram of preparation of laminated Ti/Al₂O₃ composite.](http://dx.doi.org/10.2109/jcersj2.122.222)
utilized. The laminated structure of Ti and Al$_2$O$_3$ was observed by optical metalloscope (BA310MET, China). The phases and compositions of interfaces were identified by X-ray diffraction (D8-ADVANCE, Germany). The microstructure and diffusion distance of adjacent layers were analyzed by a scanning electron microscopy (SEM) (FEI QUANTA FEG 250, United States) equipped with energy dispersive X-ray analysis (EDX).

3. Results and discussions

The DSC (Differential Scanning Calorimeter) and TG (Thermo Gravimetric Analysis) results of Al$_2$O$_3$ green layers in binder removal process were shown in Fig. 2. An obvious weight loss of sample was indicated by the curve of TG from 290 to 433°C. Meanwhile, the curve of DSC showed a prominent endothermic peak at this temperature range. It means that the majority of binder removed from Al$_2$O$_3$ layers during this process, and the DSC/TG result for Ti layers also showed the similar tendency as Al$_2$O$_3$ layers. The tendency of weight loss from 433 to 650°C was gradually moderated, and it turned to be stable after 650°C. Consequently, the binder removal temperature range of Ti and Al$_2$O$_3$ was determined from 209 to 650°C, and slower heating rate as well as longer soaking time greatly affects the binder removal process.

The fracture surface in fracture experiment of Ti/Al$_2$O$_3$ composite was showed in Fig. 3. It can be clearly observed the laminated structure (Ti layers have a brighter metallic luster than Al$_2$O$_3$ layers) and the thickness of each of layers was about 200–250 μm. Figure 4 shows the microstructure of cracks propagating paths and crack deflections after fracture experiment. The clear crack deflections along Ti-Al$_2$O$_3$ interfaces form the step-like cracks, which is effective to extend crack length and absorb more fracture energy. Moreover, the crack branches and deflections appearing in laminated Ti/Al$_2$O$_3$ ceramic composite absorb more fracture energy than monolithic ceramic, which also improve the bending strength and fracture toughness.16,17

SEM micrographs of interface between Al$_2$O$_3$ and Ti layers are shown in Fig. 5. The well-grown grain of Al$_2$O$_3$ and Ti spreading either side of the interface (the left area is Al$_2$O$_3$ and the right area is Ti) were observed. Structurally, close bonding of interface made the laminated Ti/Al$_2$O$_3$ reaches to a great bonding strength between Ti and Al$_2$O$_3$ layers. The characterization results of metalloscope and SEM both indicated that the laminated Ti/Al$_2$O$_3$ composite was sintered full density at 1450°C for 60 min under an applied pressure of 25 MPa.

The fracture surface of sample was detected by XRD and the result was shown in Fig. 6. The well-defined peaks of Ti, Al$_2$O$_3$ and inter-metallic compounds between Ti and Al were found, which meant that Ti/Al$_2$O$_3$ laminated composite was mostly composed of Al$_2$O$_3$ and Ti phases, together with little Ti$_3$Al, TiAl, TiAl$_2$ and AlTiO$_2$. To investigate clearly the diffusion phenomena in interfaces, laminated Ti/Al$_2$O$_3$ sample was characterized by EDX, as shown in Fig. 7. Al, Ti and O element diffusion lines exhibit a different gradual trend, it is suggesting that Al element spans the interface and diffuses to Ti layers, whereas Ti and O elements are kept in place. Based on estimation, the diffusion distance, which is the same as the reaction region, is about 5 μm. The results of XRD and EDX confirm that Al element of Al$_2$O$_3$ layers diffused to Ti layers and react with Ti to form inter-metallic compounds in the diffusion region (Fig. 7).

As it is reported,7,8 in the process of sintering, Al$^{3+}$ dissociated by Al$_2$O$_3$ diffused to Ti layers and reacted with Ti to form Ti–Al inter-metallic compounds, Ti$_3$Al was the most influential phase to the mechanical properties of composites. In addition, the solid solution of dissociated O is always dispersed in Ti–Al inter-metallic compounds, such as AlTiO$_2$ in XRD patterns of Fig. 6.

Finally, according to the calculation of theoretical analysis of the thermodynamics, the possibility of interfacial reaction products Ti$_3$Al and TiAl were verified. Because of the melting...
point of Al and Ti are 657 and 1670°C, Al will be molten at 1450°C, while Ti remains solid. Therefore, the binary system was appropriated to Raoult’s law and Henry’s law. Due to the interfacial reaction, Ti + Al → Ti₃Al, existing in the binary system, the Gibbs free energy of Ti₃Al was expressed by \(\Delta G_{\text{Ti₃Al}} = \Delta G_{\text{Ti₃Al,0}} + 3RT \ln \alpha_{\text{Ti}} + RT \ln \alpha_{\text{Al}} \). By the above equation, it can be obtained that the Gibbs free energy of Ti₃Al and TiAl were -117.56 KJ/mol and -74.32 KJ/mol, separately. The results showed that Ti₃Al and TiAl could spontaneously react, and it was easier to generate Ti₃Al than TiAl.

4. Conclusions

Ti and Al₂O₃ green layers were prepared by tape casting with close control of thickness. As is shown in SEM micrograph, the laminated Ti/Al₂O₃ composite was sintered compactly by vacuum hot-pressing sintering with great combination of different layers. Crack branches and deflections of interfaces prolong crack length and absorb more fracture strength. The dissociated Al³⁺ diffuses to Ti layers (about 5 μm) and reacts with Ti to form an inter-phase region composed of Al₂O₃, Ti, Ti₃Al, TiAl and AlTi₂ phases.

Acknowledgement Authors appreciate the financial support of the National Natural Science Foundation of China under the Grant No. 51372099 and the Doctoral Fund of University of Jinan (XBS1310). Authors also appreciate the financial supported by Program for Scientific research innovation team in Colleges and universities of Shandong Province.

References