Journal of the Ceramic Society of Japan
Online ISSN : 1348-6535
Print ISSN : 1882-0743
ISSN-L : 1348-6535
Multi layer ceramic capacitors materials research using first-principles calculations
Author information

2014 Volume 122 Issue 1426 Pages 367-372


In this paper the multi-layer ceramic capacitors (MLCCs) materials research using first-principles calculations are explained. For example, doping with 3d transition metals, particularly Mn, is thought to play an important role in determining the reliability of dielectrics used in MLCCs. However, a detailed examination of the electronic structure, solution energies and compensation mechanisms of these systems is lacking. The quantitative analysis of the substitution of Mn in perovskite-type BaTiO3 using first-principles calculations in combination with chemical thermodynamics is reported. The solution energies of dopants with vacancy and n-type and p-type charge compensations have been systematically calculated. Substitution onto the two crystallographically different cation sites in cubic BaTiO3 under four different thermodynamic conditions with different chemical potentials is also examined. Mn is found to be stable on Ti sites under all conditions examined, although its charge state varies. In the oxidizing limit, Mn substitutes for Ti as a Mn4+ ion, but in the reducing limit, Mn substitutes for Ti as a Mn2+ ion compensated by the formation of an O vacancy. Depending on the Fermi level of the system, the valence state of Mn varies from Mn4+ under p-type conditions, to Mn2+ under n-type conditions. Mn3+ is not found to be stable. These results agree well with the experimentally determined site preferences and valence states of Mn and help to further elucidate the features of Mn-doped BaTiO3 at the atomic level.

Information related to the author
© 2014 The Ceramic Society of Japan
Previous article Next article