Journal of the Ceramic Society of Japan
Online ISSN : 1348-6535
Print ISSN : 1882-0743
ISSN-L : 1348-6535
Feature: Molecular Synthesis Routes towards Advanced Ceramics: Full papers
UV Raman spectroscopy of segregated carbon in silicon oxycarbides
Felix ROTHPhilipp WALESKAChristian HESSEmanuel IONESCUNorbert NICOLOSO
ジャーナル フリー

2016 年 124 巻 10 号 p. 1042-1045


Polymer-derived silicon oxycarbides exhibiting ≤1 and 10 vol.% of segregated carbon finely dispersed within a glassy SixOyCz matrix have been investigated by UV Raman spectroscopy using a laser excitation of 4.8 eV (λ = 256.7 nm). Carbon exists as amorphous sp2–sp3 bonded component in SiOC/C (≤1 vol.%) pyrolyzed at 1100°C in H2, including C–C single bonds, polymeric chains and small polycyclic aromatic hydrocarbons (PAHs). The formation of nanocrystalline carbon at T > 1400°C is seen in the Raman spectra of SiOC/C (≤1 vol.%) and SiOC/C (10 vol.%) by the appearance of the G band of graphite. Tempering at 1600°C increases the degree of order within the carbon phase. However, the slight narrowing of the G peak with processing temperature (by about 5%) indicates still not well-crystallized carbon: the Raman results can be best explained by turbostratic carbon (with a lateral size La of ≈2 nm) and do not support the model description in literature as a network of single layer graphene.

© 2016 The Ceramic Society of Japan
前の記事 次の記事