Journal of the Ceramic Society of Japan
Online ISSN : 1348-6535
Print ISSN : 1882-0743
Full paper
Superconductivity in AgxTaS2 single crystals with stage structure obtained via proton-driven ion introduction
Masaya FUJIOKANaoki KUBOMasanori NAGAORobin MSISKANaoki SHIRAKAWASatoshi DEMURAHideaki SAKATAHideo KAIJUJunji NISHII
Author information
JOURNALS FREE ACCESS

2018 Volume 126 Issue 12 Pages 963-967

Details
Abstract

Ag+ ions were intercalated into the transition-metal dichalcogenide TaS2 using the recently developed method of proton-driven ion introduction. Single-crystalline Ag0.58TaS2 with a stage 1 structure and Ag0.21TaS2 with a stage 2 structure were prepared using this method. The stage 2 structure of Ag0.21TaS2 was formed by exploiting the differences in ion diffusion properties among the polytypes of TaS2. Furthermore, our intercalation method can forcibly insert Ag+ ions into interlayers by applying a high voltage at low temperature (100°C), resulting in the formation of thermodynamically metastable phase. Such a synthesis approach offers a potential route for diversifying intercalation compounds with different stage structures. The first observations of superconductivity in AgxTaS2 were demonstrated in this study. The onset of superconductivity of AgxTaS2 was estimated to be 0.4 and 1.7 K in the samples with x = 0.58 and x = 0.21, respectively. Some anomalies, which were speculatively attributed to charge density wave order, were confirmed in the resistivity measurements of AgxTaS2. The results suggested that the anomalies were closely correlated with the superconducting transition temperature.

Information related to the author
© 2018 The Ceramic Society of Japan
Previous article Next article
feedback
Top