Journal of the Ceramic Society of Japan
Online ISSN : 1348-6535
Print ISSN : 1882-0743
ISSN-L : 1348-6535
First-principles study of electronic structure of Er-doped monoclinic ZrO2
Author information

2019 Volume 127 Issue 12 Pages 958-962


The electronic structure of Er-doped monoclinic ZrO2 was investigated by the generalized gradient approximation (GGA), GGA plus on-site Coulomb interaction (GGA + U) calculation, and modified Becke-Johnson (MBJ) exchange potential calculation. In the GGA calculation, the minimum bandgap energy of ZrO2 was estimated to be 3.74 eV. The valence band was mainly composed of O 2p states, which strongly hybridized with the Zr 4d states. The conduction band was composed of Zr 4d and O 2p states. When an Er atom replaced one of the Zr atoms, seven-fold Er 4f states appeared in the forbidden gap of ZrO2. Considering the spin–orbit coupling, the energy positions of the seven-fold Er 4f states in the forbidden gap hardly changed. Based on the GGA + U calculation, the Er 4f states shifted to the lower energy direction and entered into the valence band of ZrO2 with an increase in the U parameter. In addition, the MBJ calculation gave similar results using a small U parameter in the valence band energy region, while the conduction band region is similar to the GGA + U calculation result with a large U parameter. Based on these results, we concluded that the GGA calculation is the most appropriate to describe the position of Er 4f states in the bandgap of Er-doped ZrO2 phosphors among the three kinds of calculation methods examined in the present study.

Information related to the author
© 2019 The Ceramic Society of Japan
Previous article Next article