パイルスラブ式盛土における
改良杭頭部ジオテキスタイル土のうちの特性評価

野中隆博1・小島謙二2・米澤豊司3・佐藤貴史4・森野達也5・青木一二三6

新幹線盛土のような高性能盛土の盛土材として適さない建設発生土の有効利用を図るために、盛土内に地盤改良杭を打設し、それによりコンクリート路盤を支持する新しい盛土構造（パイルスラブ式盛土）の開発を行っている。これまで、1/10スケールの振動実験等によりその効果の確認を行ってきた。その結果、地震時において無対策時と比較してコンクリート路盤の沈下が大幅に抑制されることが確認された。しかし、杭頭部とコンクリート路盤間の砕石の抜け出しにより、コンクリート路盤が想定よりも沈下していることが確認された。本論文では、砕石の抜け出しを防止するために改良した改良杭頭部ジオテキスタイル土のうち、載荷試験結果より得られた特性について述べるものである。

キーワード：パイルスラブ式盛土、ジオテキスタイル土、水平載荷試験、鉛直載荷試験

1. はじめに

建設発生土を盛土材として有効利用することには、環境面・経済面において非常に有効であると考えられる。しかしながら、新幹線盛土のような高性能盛土においては盛土材について良質な材料を用いることが必要であるため建設発生土の使用が難しい状況にある。このような状況を鑑み、良質でない盛土材を用いた盛土内に地盤改良杭を有し、コンクリート路盤を支持する盛土工法（パイルスラブ式盛土）の検討を行ってきた（図1）。良質でない盛土材を用いた通常の盛土の場合、大規模地震時において囲壁構造体や地盤を含む盛土に沈下が発生し、コンクリート路盤や盛土の再構築等の大掛かりな補修が必要となることが想定される。工法では、地盤改良杭によりコンクリート路盤を支持することにより、路盤下の盛土体が沈下したものでも、改良杭により支持されるコンクリート路盤自体は沈下せず、軌道の変形を抑える構造としている。本工法については、振動実験を通じてコンクリート路盤の変位、改良杭の損傷、盛土の変状等を観測し、地震時における性能を確認してきた。しかしながら、実際において地盤改良杭頭部とコンクリート路盤間の砕石の抜け出しによりコンクリート路盤が沈下するという現象が確認され、課題となっていった。本論文では、この「ジオテキスタイル土を使用した大型盛土のうち」について、載荷試験により得られた特性について述べる。

図1 パイルスラブ式盛土概要図

1地盤工学会会員、公益財団法人 鉄道総合技術研究所 構造物技術研究部（〒185-8540 東京都国立市光町2-8-38）
2正会員、公益財団法人 鉄道総合技術研究所 構造物技術研究部（〒185-8540 東京都国立市光町2-8-38）
3正会員、独立行政法人 鉄道建設・運輸施設整備支援機構 北海道新幹線建設局（〒060-0002 札幌市中央区北二条西1丁目）
4正会員、独立行政法人 鉄道建設・運輸施設整備支援機構 北海道新幹線建設局（〒060-0002 札幌市中央区北二条西1丁目）
5地盤工学会会員、独立行政法人 鉄道建設・運輸施設整備支援機構 設計技術部 （〒231-8315 神奈川県横浜市中区町田5-50-1）
6正会員、株式会社 レールウェイエンジニアリング 技術部（〒231-8315 神奈川県横浜市中区町田5-50-1）
2. バイルスラブ式盛土の概要・課題

筆者らは、これまで 1/10 スケールの模型振動実験により耐震性能の検討を行い、その有効性を確認している。以下に実験結果の概要を示すとともに、確認された課題について述べる。実験の詳細は参考文献[1][2]に示す。

実験は不規則波（土構造物用標準波 Q2 地盤）を入力波として、ピーク加速度を 100gal に上昇させる段階加振を行った。図-2 は各加振値時のバイルスラブ式盛土のコンクリート路盤と盛土体天端の沈下量である。杭頭天端とコンクリート路盤は、図中で示すように、盛土および杭頭天端に碎石を敷設し、碎石上にコンクリート路盤を施工した状態となっている。コンクリート路盤では 10mm、盛土天端では 30mm の沈下が生じた。バイルスラブ式盛土の有効性は確認されたが、コンクリート路盤の沈下量は想定していたものよりもやや大きな値であった。実験後、杭頭部を確認したところ、コンクリート路盤と盛土間にある碎石が盛土の沈下に伴い杭頭部から抜け出し、それにより路盤が沈下していることが確認された[3][4]（図-3）。碎石の抜け出しを抑制する方法としては、コンクリート路盤と杭体を剛結合するモデルを製作し振動実験を行い挙動の評価を行っている。コンクリート路盤の沈下は全く生じなかったが、コンクリート路盤の加速度が高い応答倍率を示すことが確認され、剛結合の場合は杭頭部に大きな応力が発生することや列車走行安定性が課題となった。これらの結果から、杭頭部とコンクリート路盤の剛合構造として、杭頭部碎石層の抜け出しを防止し、コンクリート路盤の応答を増幅させず、地盤改良杭の

图-2 各加振時における沈下量

图-3 振動実験後の杭頭部状況

3. ジオテキスタイル土のうの提案

基本的な支持性能として、コンクリート路盤と杭頭部間の碎石層を有することによりコンクリート路盤の応答増幅を抑え、改良杭の応力発生、損傷を防ぐことが可能である。実験結果として得られており、施工性や経済性からも適していることは明らかであった。このため、杭頭部の碎石をジオテキスタイルで囲むことにより、杭頭部に杭径と同程度の大きさの土のうを設置する工法（ジオテキスタイル土のう）を提案した。ジオテキスタイルで碎石を囲むことにより碎石の抜け出しを防止することがに加え、碎石を拘束することによる支持性能の向上も期待できる。また、ジオテキスタイル土のうという柔構造部材を用いた結合部であるため、コンクリート路盤の応答増加、杭体の応力増加を抑制する効果も期待できる。ジオテキスタイル土のうを用いたバイルスラブ式盛土の概要図を図-4 に示す。

4. ジオテキスタイル土のうの載荷荷試験

ジオテキスタイル土のうをバイルスラブ式盛土に適用するにあたり、新幹線盛土という高性能盛土への適用、コンクリート路盤下に設置されることから、ジオテキスタイル土のう自体の地震時荷重や列車による繰返し荷重に対する抵抗特性、およびその台車を把握することが重要となる。このため、L2 地震時相当の荷重レベルを考慮した正負交番水平載荷試験、列車荷重による継返し

图-4 ジオテキスタイル土のうの概要図

图-5 ジオテキスタイル土のうの製作状況
荷重を考慮した動的鉛直載荷試験を、実物大供試体を用いて実施した。

（1）正負交番水平載荷試験

パイルラッパ式盛土は、地震時におい豊田盛土が沈下し、地盤改良杭のみでコンクリート路盤を支持することを想定している。そのような状況において水平力が作用した時のジオテキスタイル土の挙動、抵抗特性、変形状況等を把握するために実物大供試体を用いて正負交番水平載荷試験を実施した。

a) 供試体の製作

供試体は、基礎コンクリート上に地盤改良杭杭部を模擬した1.0m、高さ15cmの円柱のコンクリート製突起（擬似杭頭）を2本設け、その上部にある杭先端の位置を0.1m、1.0mに等間隔に配置したジオテキスタイル（製品保証値81kN/m）を2枚直交方向に敷設後、小型の板金の杭先端の支持（杭先端の支持）を2段設置し、土の上部に直径コンクリート打設しコンクリート路盤として縦断を図っている。図-6に、供試体の写真を示す。

b) 載荷条件

試験は、地震時により杭周辺の盛土が沈下し杭の上で上載荷重を支持する場合を想定して行った。

載荷はコンクリート路盤内に予め2本の塗装管を設置し、その中にPC鋼棒を通し、基礎コンクリート上に構築した載荷架台を用いて200kN油圧ジャッキを片側2本ずつ計4本使用して行った。杭1本を作用する上載荷重120kN/本を（杭先端杭径15kN/杭1本当たり面積7.8m²）で2本分である240kN（1.0G相当）を最大水平載荷重として、0～80kN、0～160kN、0～240kNの80kNピッチの段階載荷とし各荷重3回の繰り返し載荷を計画したが、0～160kN載荷時に変位量が大きくなったため変位制御に変更して載荷を実施した。また、室内振動実験結果より水平変位量16cm（900gal載荷後）で最大変位と設定した載荷サイクルを図-7に示す。

c) 実験結果

試験の計測は、コンクリート路盤の沈下、水平変位について実施した。計測点を図-8に示す。沈下は、杭の前後2箇所の4測点（沈下①～③）で、水平変位はコンクリート路盤の端部2箇所の4測点（水平①～④）で計測を実施した。

①沈下量

最大水平変位（16cm：水平荷重200kN）時の沈下量を図-8に示す。4測点中の最大沈下量は沈下③で5.4mmで、また載荷方向の2測点の相対変位は最大で0.6mmであった。載荷変位の進行に伴い、図中下側（沈下①）、③側に傾斜する方向に沈下が進行した。今回の試験では2つの杭杭部による2点支持としたため、載荷方向のコンクリート路盤が載荷方向に保持され一定変位を示すため、載荷荷重の変動が載荷時の変位を顕著に表れたと考えられる。実際、載荷方向に多点支持となるためこのような現象は生じない。以上の結果より、L2地震時の非常な大きな水平荷重に対して、コンクリート路盤の沈下量は非常に小さなものであり、地震時のジオテキスタイル土の挙動が路盤の支持構造として問題ないことが確認された。
水平変位

水平荷重と水平変位量（平均値）の関係を図-9、10に示す。水平変位は±15 mm程度までは接触式変位計で、接触式変位計の計測範囲を超える変位については巻取り式変位計で計測を行った。±80kNを3回繰返しした後、荷重を増加したところ100kN付近で水平変位量が増加傾向を示したため変位制御に切替えた。水平変位量±50 mm（±190kN）までは水平変位に伴う荷重の増加が確認されたが、それ以降は、変位は増加するが荷重は200kN程度の一定値となった。また、繰返し載荷時における履歴ループはほぼ同じ形状を示していることから再現性の高い履歴特性を有していることが確認された。

図-9 荷重-水平変位グラフ（接触式変位計）
図-10 荷重-水平変位グラフ（巻取り式変位計）
図-11 ±800N載荷時のせん断応力-せん断ひずみ
図-12 変位制御±3mm時のせん断応力-せん断ひずみ
図-13 変位制御±50mm時のせん断応力-せん断ひずみ
図-14 ジオテキスタイル土のG/G0, h

※1: 鉄道構造物等設計標準・同解説 耐震設計より

G/G0 : ジオテキスタイル土のう
粒度調整砕石 : G/G0
粒度調整砕石 : h

y: せん断ひず撚幅
図-11〜13 に、代表的な載荷段階におけるせん断応力-せん断ひずみの履歴を示すとともに、図-14に、せん断ひずみ1×10^{-6}時の値をG_{0}とするジョテキスタイル土のうちの G/ G_{0}、 h/の示す。比較のため、現在、鉄道舗装の路盤材料として使用される粒状碎石（M-40、 30、 25）のうち代表的な剛性比、減衰比が示されているM-30（最大粒径 30 mm）における G/ G_{0}、 h/の示す。ジョテキスタイル土のうちの結果材には粒状碎石（M-40：最大粒径 40 mm）を用いている。

図-11 により、せん断ひずみの振幅が0.002程度まではほぼ弾性的な挙動を示すことが確認され、それ以降（図-12、図-13）においては大きな履歴減衰を示すことが確認される。また、図-14 により、ジョテキスタイル土のうちコンクリート路盤を支持する構造は、粒状碎石で支持される従来の支持構造とほぼ同等のせん断剛性比を示すことが確認された。履歴減衰においては、せん断ひずみ振幅 0.002程度においては粒状碎石（M30）と同程度の14%程度の履歴減衰を示し、それ以降、せん断ひずみ0.01 においては粒状碎石（M30）の2倍以上の履歴減衰を示すことが確認された。これは、ジョテキスタイル土のうちの結果材がジョテキスタイルで拘束されていることにより、通常のコンクリートのような大きな変形においてもジョテキスタイルの引張剛性により形状が保たれ、それに伴う大きな減衰効果が得られているものと考えられる。このことから、通常の粒状碎石で支持される構造と比較し、変形が大きくなるに従い、ジョテキスタイル土のうちの結果材はコンクリート路盤と地盤改良杭間の水平力の伝達において大きな減衰効果が期待できるものと考えられる。また、それにより剛結時に確認された抗張力の高い応答を抑制し、コンクリート地盤と等価の応答になることが期待される。

③ジオテキスタイル土のうちの観察・引張試験
載荷試験前後のジオテキスタイル土のうちを 図-15に示す。載荷に伴い、抗張部と土のうちのいずれも確認されるがうちの形状は保持されており、ジオテキスタイルの破断し路盤との付着すれ、粒状の抜け出し等も確認されなかった。

水平載荷試験後、土のうちの引張したジオテキスタイルの状況を図-16に示す。水平載荷試験は、擬似抗張頭としてコンクリートを用い、周辺盛土が沈下し重量が全て杭に集中した場合を想定した状態において、最終的に杭径の18%程度の大きな水平変位を制限的に与えるという厳しい条件で実施した。これにより、拟似抗張頭部材との接触面が杭頭中心部近くで、土のうちの内部の粒状材がこぼれ出しうるようなものではないが、部分的にジオテキスタイルの損傷が確認された。また、上側に敷設したジオテキスタイル土においても変形が確認された。
キスタイルは、直接杭と接していた下側と比較し損傷の度合いは小さかった。

截荷試験後のジオテキスタイルの引張強度の変化を確認するため、截荷試験前後においてジオテキスタイルのストランド1本当たりの引張試験を実施した。図-17に截荷試験後のジオテキスタイルにおける引張試験の採取位置を、図-18に破壊強度比（試験値/製品保証値）～伸びひずみ関係を示す。

主方向については、供試体9本中6本で截荷観察を与えているジオテキスタイルと比較して10％程度の強度低下が確認されたが、製品保証値を満足する値が確認された。一部、杭頭部中心付近の供試体3本（点線円内）において破壊低下が確認された。杭頭部中心付近は損傷具合が他の供試体より大きかったことから、大きな破壊荷重を与えた状態で、堅固なコンクリートとの接触面に対し大きな強制変位を与えた際の摩擦による影響が大きかったものと考えられる。従方向については10～25％程度の強度低下が確認されたが、ほぼ全ての供試体で製品保証値を満足する値が確認された。

(2) 動的鉛直截荷試験
ジオテキスタイル土のはコンクリート路盤の下に設置される。このため、列車による繰返し荷重に対する挙動を把握するために実物大の部材模型を用いた動的鉛直截荷試験を実施した。

a) 供試体の製作
供試体の概要図を図-19に、および試験装置への設置状況を図-20に示す。大型三軸圧縮試験機下部に供試体容器を設置し、容器内にジオテキスタイル（製品保証値81kN/m）を敷設後、粗調砕石を締め密密度95％程度で締めた中詰め土の上を設置し、ジオテキスタイルを巻き込むことで杭部のジオテキスタイル土の一部を模擬し、その上部にコンクリート路盤を打設し供試体を製作した。計測点はコンクリート路盤上部で2点設置した。

b) 截荷条件
試験は、厳しい条件下として、水平截荷試験と同様に地震により杭杭間の盛土が沈下し杭体のみで截荷荷重を支持する場合を想定し、疲労設計で考慮する截荷回数200万回以上を満足するように設定し、最終的には新幹線の6万年の運行に相当する截荷回数260万回程度の荷重に截荷した。荷重は荷重振幅44kN～130kNの正弦波（1Hz）として与えた。

c) 実験結果
①沈下量
死荷重による沈下を考慮した実験結果を図-21に示す。260万回に相当する繰返し荷重による沈下量は測点①で1.62mm、測点②で1.45mmであった。44kN～130kNの繰返し截荷の1回目の截荷による沈下が1mm程度確認されるが、それ以降、年間の沈下量の増分は微小であり、また、各測点において大きな沈下量の歪みを見られないことから、列車走行安全性に問題がないと考えられる。よ
って、今回提案した杭頭部の対策案を用いることによる、繰返し荷重による軌道変形の影響は小さいことが確認された。
②ジオテキスタイル土のうの観察・引張試験
載荷試験後のジオテキスタイルを用いた引張試験結果を図-22に示す。試験後において、全ての試験溶材に対して、製品保証値を満足した結果となった。ただし、土の底面中央部で採取した供試体は、観察は試験前の供試体と変わりなかったが、若千の強度低下が確認された（点線内）。側面部については、土の内の砂石の沈下により、ジオテキスタイルが緩む現象と砂石が側面方向にあらかじめ現象が同様に生じることと、今回の試験結果の沈下量程度では、ジオテキスタイルが緩む現象が大きく、ジオテキスタイルには引張力はほとんど生じていないものと考えられ、これにより端部より中央部の方が大きな転直反力が発生したものと考えられる。
また、実験はコンクリート床の鉄板上で実施しており、底面の変形が無く、載荷重が全て作用する厳しい条件であったことが一因として想定される。実際の改良杭を構成した地盤上であれば、改良杭の強度はコンクリートの1/10程度を想定していることから、今回の試験結果よりも強度が低いかっただった可能性がある。
本試験の非常に厳しい条件下においても製品保証値を満足する結果が得られることで、帯返し荷重によるジオテキスタイルへの影響は問題ないものと考えられる。

5. おわりに
建設発生土の有効利用を目的としたパイプスラブ式盛土において発案した杭頭部の砂石層の抜け出しに対し、杭頭部の砂石層をジオテキスタイルで閉じ込めるジオテキスタイルのうを提案し、その特性を確認するために実物大模型を用いた正負交番翼による載荷試験を実施した。
水平載荷試験よりジオテキスタイル土のうの変形特性は粒調整石と同等程度であり、それに加えて載荷強度が大きいという特性を有していることが分かった。12. 地震の水平力を載荷後もコンクリート床板の沈下量は小さく、土の形状は保持され、砂石の抜け出しもなく安定した構造であることが確認された。また、載荷後のジオテキスタイルは、杭先端端部と接触面、杭心部で一部損傷が確認されたが、隠れ製品保証値を満足する強度であり、土の内部の砂石がこれに起因するような大きな損傷は確認されなかった。
鉄筋引張試験結果より、繰返し荷重の繰返し荷重によるジオテキスタイルのうの低下は微小で、路盤への影響は小さいことが確認された。特に、今回は杭だけを支持した状態での長期間の試験であり、鉄筋引張の影響はほとんどないものと考えられる。載荷後のジオテキスタイルは製品保証値を満足する強度であり、繰返し荷重による強度低下は問題ないことが確認された。

収載範囲後のジオテキスタイルの引張試験結果より、一部のジオテキスタイルにおいて強度低下が確認された。今回の載荷試験ではジオテキスタイルとの接触面としてはコンクリートを用いたことが強度低下の一因として考えられる。実際の施工において接触面は地盤改良杭であり、その強度はコンクリートの1/10程度を想定していることから、今回の試験結果と比較し強度低下は小さくなるものと考えられる。また、載荷試験後の観察から土の形状等に大きな変化は発生していないことや、ジオテキスタイルは面的に挙動しており一部の損傷が支持構造に影響を与えるような現象には至らないことから、ジオテキスタイル土の性能を著しく劣化させるような状態にはならないものと考えられる。
これらの結果より、今後12. 地震時警報についての設計考え方等を検討していく必要があるとは考えられるが、ジオテキスタイル土のうは、12. 地震相の水平力、列車による繰返し荷重に対してコンクリート床板の性能を保持できる支持構造形式であると考えられる。
今後は、本研究の結果を踏まえ、ジオテキスタイル土のうを考慮した盛土の1/10振動実験や動的解析によりパイプスラブ式盛土の最終的な構造確認を実施し、その設計法の確立を図る予定である。

参考文献
1)米澤豊司、丸山修、森野達也、武田栄広、小島謙一、坂本教案：パイプスラブ式盛土の模型振動台実験—地盤改良杭の効果—、第65回年次学術講演会、土木学会、2010
2)森野達也、丸山修、米澤豊司、武田栄広、青木一三、小島謙一、坂本教案：パイプスラブ式盛土の模型振動台実験—粘性土盛土—、第46回地盤工学会研究発表会、地盤工学会、2011
3)坂本教案、渡辺健治、丸山修、米澤豊司、森野達也、清田三四郎、青木一三:パイプスラブ式盛土の模型振動台実験—杭頭部の構造比較—、第46回地盤工学会研究発表会、地盤工学会、2011
4)鉄道総合技術研究所編 鉄道構造物等設計標準・同解説 土構造物、2007
5)坂本教案、小島謙一、森野達也、米澤豊司、丸山修、青木一三:地盤改良杭で軌道面を支持する補強盛土構造の地震時警報、第26回ジオシエンティックスシンポジウム、国際ジオシエンティックス学位日本支部、2011
6)小島謙一、野中隆博、米澤豊司、森野達也、丸山修、鈴木喜弘、青木一三: 土圧計による路盤の耐衝撃実験、第47回地盤工学会研究発表会、地盤工学会、2012
7)鉄道総合技術研究所編 鉄道構造物等設計標準・同解説 建築設計、1999
PROPERTY OF GABION LAID BETWEEN THE HEAD PART OF IMPROVEMENT PILE AND CONCRETE SLAB FOR PILE SLAB TRACK

Takahiro NONAKA, Kenichi KOJIMA, Toyoji YONEZAWA, Takashi SATO
Tatsuya MORINO, Hifumi AOKI

We have developed the pile slab track embankment which makes use of the material of poor quality, but can support concrete slab by soil improvement piles. Up to now, we have confirmed the effect of this method by the shaking table test. As a result, the method can reduce seismic settlement of concrete slab compared with that of concrete slab without the support by the piles. However, it was confirmed that concrete slab subsided rather than expected by slipping out of the macadam existing between a pile head part and concrete slab. This paper describes, based on the loading test results, of the gabion laid between the head part of improvement pile and concrete slab, with was devised in order to prevent slipping out of macadam.

KEYWORDS: Pile slab track, Gabion using a geotextile, Horizontal loading test, Vertical loading test