千鳥配置で施工された
ジオグリッド急勾配補強土壁施工事例紹介

山野 巖1・間 昭徳2・新谷 秀人3・今村 哲谷4

道路盛土において、鋼製壁面材を使用したジオグリッド急勾配補強土壁が急速に普及している。この時、補強材の路線の高さ方向配置は、原則的に補強材を同一高さに敷設する所謂全面敷設による方法の他に、安全性が同一でより経済的な設計が可能な千鳥配置が提案されており、これまで問題なく施工された事例が国内で1,000件以上にある。千鳥配置を採用することにより、壁面安定補強材なしで全ての壁面材に補強材（ジオグリッド）が連結され、より合理的な設計・施工が可能となる。

本論では、次の内容について紹介する。①千鳥配置についての詳細な説明 ②設計・施工事例の紹介

1. 千鳥配置について

ジオテキスタイルによる補強土壁工法において、盛土内に敷設される補強材（ジオテキスタイル）の位置、敷設長さ、グレード（強度）等は、円弧すべりを用いた極限設計法による盛土の安定計算から求められる。しかし、補強材の高さ方向の敷設間隔を適度に大きくすることで、盛土の一体化という点で問題が生じるため、現行の設計基準においては、補強材の高さ方向の敷設間隔を最大で1m程度と規定している。

通常、補強土壁工法は、鋼製枠等を用いた壁面工を伴う。このとき、壁面工は補強材と連結されることにより安定する。一般的な壁面工は、その施工性を考慮して、幅2m程度、高さ50～60cm程度である。補強材の鉛直敷設間隔が、壁面材の単位高さより大きくなった場合に補強材を同一高さに敷設する全面敷設を行ったとき、壁面工には補強材に連結される段と連結されない段ができることがある。このような状態は、壁面工の安定上好ましくない。そこで、盛土の安定計算上、補強材敷設の必要ない段にも壁面工の安定を目的として、低強度の補強材を敷設することが必要となる。この補強材は、一般に「安定補強材」と呼ばれている。（図-1）

そこで、補強材を千鳥状に敷設した場合を考えてみる。高さ50cm、幅が2mの壁面工に対して、幅1mのジオテキスタイルを1枚連結

1正会員、三菱化学産資株式会社 土木資材事業部 技術・開発グループ（〒100-0005東京都千代田区丸の内1-8-2 第一鉄鋼ビル）
2正会員、三菱化学産資株式会社 土木資材事業部 技術・開発グループ（〒100-0005東京都千代田区丸の内1-8-2 第一鉄鋼ビル）
3正会員、三菱化学産資株式会社 土木資材事業部 技術・開発グループ（〒100-0005東京都千代田区丸の内1-8-2 第一鉄鋼ビル）
4旭化成建材株式会社 土木資材営業部（〒105-0012東京都港区芝大門2-5-5 住友芝大門ビル）
する。それを千鳥状に積み重ねることにより、
全ての主補強材が壁面工と連結される。その結果、
同じ盛土を構築する場合において、必要となる
補強材の敷設量は、全面敷設に比べて千鳥
配置の方が、安定補助材を必要としない分少な
くてすむ。（図-2）また、補強材の全面配置によ
る補強土壁の設計計算は、代表断面であるA－
A断面においてのみ行われる。（図-3）に対して、
千鳥配置の設計計算は、B－BおよびC－Cの
2断面の検討を行い、両断面ともに設計上要求
される安全率を満たすことを確認して行われる。
（図-4）
本論文は、ジオテキスタイルを千鳥状に配置
する補強土壁工法を用いて、構築された盛土の
施工事例を紹介するものである。

2. 施工事例紹介

(1) 施工事例1

場所：北海道上川郡上川町
施工時期：平成4年10月
用途：道路
勾配：3分勾配
施工総量：1680㎡
補強材強度：55kN/m

写真-1 施工状況写真

写真-2 施工完了状況写真

図-3 全面敷設での設計断面

図-4 千鳥敷設での設計断面

図-5 施工断面図

-128-
(2)施工事例 2

場所：神奈川県愛甲郡愛川町
施工時期：平成5年1月
用途：道路
勾配：3分勾配
施工数量：9690m³
補強材強度：55kN/m

写真-3 施工状況写真

写真-4 施工完了状況写真

図-6 施工断面図

(3)施工事例 3

場所：三重県阿山郡阿山町
施工時期：平成5年2月
用途：道路
勾配：5分勾配
施工数量：600m³
補強材強度：55kN/m

写真-5 施工状況写真

写真-6 施工完了状況写真

図-7 施工断面図
(4)施工事例4
場 所：静岡県磐田市
施工時期：平成4年10月
用 途：道路
勾 配：5分勾配
施工数量：200㎡
補強材強度：85kN/m

写真-7 施工状況写真

写真-8 施工完了状況写真

図-8 施工断面図

(5)施工事例5
場 所：岡山県岡山市
施工時期：平成6年3月
用 途：道路（最終処分場敷地内）
勾 配：5分勾配
施工数量：8700㎡
補強材強度：110kN/m

写真-9 施工状況写真

写真-10 施工完了状況写真

図-9 施工断面図
3. おわりに

このような千鳥配置を用いた補強土壁工法の盛土施工例は、過去に1,000件以上あるが、千鳥配置を用いたことに起因する破壊例は報告されていない。また、1993年1月に発生した釧路地震（M7.8、震源深さ107km、震度VI（釧路））においても、千鳥配置により施工された補強土壁は、十分耐えた事例も報告されている。
Introduction of an example of geogrid steep-slope reinforced-earth-wall work executed in a zigzag pattern

Iwao YAMANO, Akinori HAZAMA, Hideto SHINTANI, Tetsuya IMAMURA

The use of geogrid steep-slope reinforced earth walls constructed using steel wall-surface material in road embankment work, is spreading rapidly. In Japan, more than 1,000 such works have been executed with the reinforcement material (geogrid) arranged in a zigzag pattern. No significant deformation has been caused by the use of the zigzag pattern. This pattern enables all wall-surface material to be connected to the main reinforcement material (geogrid). This allows rational design and execution by eliminating the need for wall-surface stabilization reinforcement. This report contains the following information:

• Explanation of the zigzag pattern
• Introduction of a design and an execution case