補強土壁の地震時安定性に及ぼす入力波特性の影響

井澤 淳 1・岡野幸輔 2・桑野二郎 3

ジオグリッド補強土壁の地震時の変形を考慮する際、補強材の特性、地盤材料の特性だけでなく、外力である入力地震動による影響についても考慮する必要がある。そこで本研究では補強土壁に正弦波や不規則波などを入力する遠心振動台実験を行い、その変形挙動について考察した。また、一箇所から大規模な地震を入力した実験（一定加振実験）も行い、段階加振実験との比較を行った。その結果、補強土壁の残留変形は、主として変位に一定以上の慣性力を受ける場合に生じること、段階加振と一定加振では変形モードから異なってくることなどが分かった。

キーワード：ジオグリッド、入力地震動、遠心模型実験、振動台実験、入力地震動

1. はじめに

補強土壁の地震時挙動には、補強土壁を構成している補強材と盛土材の特性（補強材と盛土材との相互作用も含む）と外力である入力地震動の3つの要因に大きく影響されると考えられる。筆者らは、これまでに補強材、盛土材の特性が補強土壁の地震時挙動に与える影響について調べてきた1,2)。また、外力についても原稿の設計で用いられる震度法を再現した傾斜台実験を行うことで、疑似静的地震動と同程度の水準震度を持つ正弦波を受けた場合の差についても考察している3)。実際の地震動は様々な周期、加速度を持つ波が混在し、補強土壁もそれに応じて複雑な応答を示すと考えられる。そこで本研究では、模型補強土壁に正弦波や不規則波などを入力し、その変形挙動について考察した。また、一般的な振動台実験では、小さな加速度、振幅から入力し、徐々に大きくなっていくいわゆる段階加振を行うことが多いが、これは一つの模型を用いて数種類の入力波を与えることで、多くのデータを得ることが最大の目的である。しかし、過去の履歴の影響に大きく左右される土構造物の実験において、この方法はさまざまな問題点を持つと考えられ、1波目から大きな規模の入力波を入れる実験方法との差を指摘されることが多い。そこで本実験では、正弦波波実験において段階加振のほかに、1波目から大規模入力波を与えたケースも行い、その違いについても考察した。このケースは最終ステップまで同じ地震波を与えるため、段階加振に対応して、以後、一定加振実験と呼ぶこととする。

図－1 模型ジオグリッド

図－2 模型補強土壁

1正会員、東京工業大学大学院理工学研究科土木工学専攻、助手（〒152-8552 目黒区大岡山2-12-1）
2非会員、前田建設工業
3正会員、東京工業大学大学院理工学研究科土木工学専攻、助教授

－183－
表-1 入力地震動

<table>
<thead>
<tr>
<th></th>
<th>CASE1</th>
<th>CASE2</th>
<th>CASE3</th>
<th>CASE4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100Hz正弦変</td>
<td>100Hz正弦変</td>
<td>防府波</td>
<td>釧路波</td>
</tr>
<tr>
<td>Step</td>
<td>波数</td>
<td>加速度(G)</td>
<td>波数</td>
<td>加速度(G)</td>
</tr>
<tr>
<td>1</td>
<td>20</td>
<td>6.03</td>
<td>40</td>
<td>27.3</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>19.8</td>
<td>40</td>
<td>29.9</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>29.0</td>
<td>40</td>
<td>28.6</td>
</tr>
<tr>
<td>4</td>
<td>40</td>
<td>29.5</td>
<td>40</td>
<td>30.8</td>
</tr>
<tr>
<td>5</td>
<td>40</td>
<td>29.4</td>
<td>40</td>
<td>22.3</td>
</tr>
<tr>
<td>6</td>
<td>40</td>
<td>30.1</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

*は周期を1/2にしたケース

2. 遠心模型実験概要

(1) 模型ジオグリッド

遠心振動台実験で用いた模型ジオグリッドは、厚さ1mmのポリカーポネイト板を図-1のように成形し作製した。ここで、模型ジオグリッドは実物と張引り剛性および引きき特性を一致するように作製しており、引き試験及び引きき試験を行っている。これらの詳細については参考文献2)を参照されたい。

(2) 遠心模型実験

振動台実験は東京工業大学 Mark3 Centrifuge および水平－鉛直2軸振動台4)を用いて50Gの遠心力場でおこなった。作成した補強土壁模型の模様図を図-2に示す。模型地盤は厚さ150mm（実物換算7.5m）で、豊浦火山を相当密度80%となるように空中落下法で作製した。模型ジオグリッドは敷設両端90mm、間隔30mmとし、アクリル製の分割パネルと結合した。実験では変形の様子を観察するため、地盤内にターゲットを設置し、CCDTVカメラを用いてターゲットの移動を観察している5)。

(3) 入力波

実験ケースは表-1に示す4ケースを行った。ケース1は100Hzの正弦波を加振ステップごとに振幅を上げて入力する正弦波段階加振実験。ケース2ではケース1におけるステップ4の地震動をステップ1から補強土壁に与えた。ケース3、4では不規則波を段階的に加振した。用いた波はそれぞれ神戸波（神戸海洋気象台NS成分）と釧路波（港湾地域強震観測システム6）などによるものであり、これらの実測データを図-3に示す。不規則波は段階的に加振し、神戸波では最後のステップ6で、釧路波では各ステップ5、6で周期を1/2にした波を入力した。ケース1から4の代表的な入力地震動時刻波図-4に示す。また、図-5にはケース3、4のフーリエ・スペクトル解析結果を示し

-184-
た。神戸波、釧路波ともに50Hz付近に卓越周波を持つ。神戸波ステップ6、釧路波5、6では周期を1/2にしているため、卓越周波は100Hz付近になっている。)

(4) 模型補強土壁の固有振動数

ケース3、4のフーリエ・スペクトル解析結果を用いて、補強土壁の固有振動数を求めることを試みた。それぞれのステップの入力波に対する補強壁上部11の応答値の比を示したのが図-6である。振動を与えたことによる変形で、補強土壁の剛性が変化し、固有周期が変わることが考えられたが、今回はそういった傾向は見られなかった。ピークを持つ周波数は各ステップで異なるが、およそ300-400Hzにピークが集中しており、この周波数付近に固有振動数があると考えられる。これは正弦波の振動数100Hzや、神戸波、釧路波の卓越周期50Hz(100Hz)と比較して非常に高い位置にある。したがって、今回の実験において模型補強土壁が固有振動数より共振することは起きにくいと考えられる。

3. 実験結果

図-7にレーザー変位計(laser1)で計測した壁面水平変位の時刻歴を入力加速度とともに示した。また図-8には、各振動ステップ後の残留変位を加速度パワーに対してプロットした。ここで、加速度パワーは式(1)で定義され、地震動の大きさと振動時間を考えできる指標として用いている。

\[I_E = \int_0^T a^2 \, dt \] \hspace{1cm} (1)

（a(m/sec^2):入力加速度
T(sec):入力地震動の記録長）

(1) 規則波と不規則波

図-7、8から分かるように不規則波のケース3、4では、ケース1、2に比べて変形は非常に小さい。特にケース3のステップ5まで、ケース4の
図-7 壁面変位と入力加速度
図-8 加速度パワーと各残留変位量の関係

図-9 不規則波の変形挙動
図-10 土壁中部と上部の変位差

図-11 Case1およびCase2の変形モード

ステップ4まではほぼ残留変形を生じず、弾性的な応答を示していると考えてよい。しかし、ケース3ステップ6およびケース4ステップ5で急激な変位を生じる。それぞれのステップにおける入力加速度と水平変位量を拡大して示したのが図-9である。ケース3および4について、最も大きなく水平変位を示しているのは図中に細線で示した箇所で、ケース3では1カ所、ケース4では2カ所である。すべての箇所で共通しているのは最大の変位を生じる直前に20Gを超える負の加速度（主働方向への慣性力）を受け、位相差を生じている点である。特に釧路波における2番目の箇所では顕著であり、3カ所の中でも最も大きな変位を示している。

これは不規則波だけでなく、ケース1においても見られる。つまり図-7をみると、最大加速度が6G程度のステップ1では、土壁内の応答加速度は入力波とほぼ一致し、変形を生じない。ステップ2の2波目で入力加速度が-20G程度となり、変形が生じ始めているのが分かる。

以上のことから、補強土壁の残留変形は主働方向にある一定以上の慣性力を受けたときに始まったと考えられる。このとき、補強土壁の応答加速度は入力加速度に対して位相差を生じ、次の主働方向への加速度で、補強土壁は大きな変位を生じたと考えられる。

(2) 段階加振の影響

図-7のケース1、2から、同程度の規模の地震動を加えた場合でも、入力する波の順によって変形量が異なることが分かる。また図-8を見ると徐々に加速度振幅を上げていくケース1では、最初から大きな振幅を与えたケース2に比べて沈下量が非常に大きく出ており、土壁上部の水平変位はケース1の方が大きく出ており、下部ではケース2の方が大きくなっている。したがって、両ケースでの変形モードが異なっていると考えられる。ここで、2つのレーザ変位計から得られた残留変位の差を求め、加速度パワーセンシングしたのが図-10である。ケース1では土壁上、下部で水平変位差があるのに対して、ケース2では変位差がほとんど見られない。したがって、ケース1では補強領域のせん断変形が生じていると推察されるが、ケース2ではせん断変形が、転倒よりも滑動量の方が支配的になっている。図-11のような変形モードになっていることが予想される。これは図-12に示したせん断ひずみ分布でも見ることができ、ケース2では下段のジョーグリッドを貫くような滑り線（ひずみの集中）が見られる。またこれはステップ1から見られた。
図-13 Case1およびCase2の加速度応答

つまり初期に大きな地震動を加えることにより、すべき線が発生し、その後、滑動が支配的になると考えられる。このときの応答加速度を比較した。
4. まとめ

本実験から次の結論が得られた。

1. 補強土壁の残留変形は、主動方向にある一定以上の慣性力を受ける後に生じる。このとき、補強土壁の応答加速度は負の入力加速度に対し大きな位相差を生じ、その後、主動方向の加速度を受けることにより補強土壁は大きな変位を生じる。

2. 段階加振法一定加振法では、変形モードが異なり、残留変形も大きく異なる。今回の実験では、一定加振で初期の大きな地震動によりすべり線が発生し、滑動変位が支配的になった。段階加振では徐々にせん断変形が蓄積した。

参考文献

1) 井澤 淳, 桑野二郎, 高橋章浩: 補強材特性の異なる補強土壁の地震時安定性に関する遠心振動台実験, ジオシンセティックス論文集第 17 巻, pp. 13-20, 2002

2) 井澤 淳, 石渡英郎, 桑野二郎, 補強土壁の地震時安定性に及ぼす懸土材粒径の影響, ジオシンセティックス論文集第 18 巻, pp. 243-250, 2003

3) 井澤 淳, 高橋章浩, 桑野二郎, ジオグリッドの特性が補強盛土の地震時安定性に及ぼす影響, ジオシンセティックス論文集第 16 巻, pp.37-44, 2001

6) 港湾地域強震観測システム, http://www.eq.ysk.nilim.go.jp/

Effects of input wave properties on seismic stability of reinforced soil wall

Jun IZAWA, Kosuke OKANO and Jiro KUWANO

This paper is intended as an investigation of effects of input wave properties on seismic stability of reinforced soil wall. For that purpose, the centrifuge shaking table test series was conducted with regular sin wave or irregular wave and behavior and residual deformation of reinforced soil wall during earthquake were compared. If the inertia force of active direction exceeding about 20G was applied to the wall, it began to deform. Moreover it did not depend on the regular or irregular wave. Furthermore, it was found that the wave which was applied at first was much effective and deformation mode was influenced.