水没した補強土壁の遠心振動台実験

井澤 淳 1・桑野二郎 2

平成16年10月23日に発生した新潟県中越地震では、水没の上昇した補強土構造物の被害が報告されている。そこで本研究では遠心模型実験装置を用いて、補強土構造物の耐震性に関する水位の影響を調べた。その結果、水没することにより補強材との引抜き抵抗が減少し、非常に大きな滑動量を生じることが分かった。また、飽和させることにより補強領域の剛性も低下するが、繰返し載荷による顕著な剛性の低下は見られず、土壁のせん断変形はあるレベル以上進行しないことが確認できた。

キーワード：遠心模型実験、振動台実験、補強土壁、飽和地盤

1. はじめに

平成16年10月23日に発生した新潟県中越地震では、多くの土木構造物が被害を受けた。土構造物も例外ではなく、道路・鉄道・宅地等は土工部の大きな変形が見られ、崩壊に至る箇所も見られた。しかしながら、従来からの耐震性を持つと言われている補強土構造物は、甚大な被害を免れていた。その反面、兵庫県南部地震の被災状況を比べると、変形の被害が大きかったことが報告されている 1)。この原因として、部分的に兵庫県南部地震よりも地震加速度が大きいことと、中越地震前の連続的な降雨により盛土材の含水比が上昇して、盛土材のせん断強度が低下していたことが挙げられている。特に集水地形に建設された鉄筋補強土壇壁が大きく変状した例があり、排水処理が不十分なため盛土内が飽和状態になっていたことが観察される。そこで本稿では、遠心模型実験装置を用いて補強土壇壁の耐震性に及ぼす水位の影響を検証した。

2. 実験概要

（1）模型補強土壁

振動台実験は東京工業大学 Mark3 Centrifuge および水平－鉛直2軸振動台 1)を用いて50Gの遠心力場でおこなった。作成した補強土壇壁模型の模式図を図-1に示す。模型高さは200mm（遠心場換算10m）で、地盤材料には豊浦砂を相対密度80%で使用した。補強材は厚さ0.5mmのポリカーボネイト板を幅9mmの帯状に切断して使用した。壁面には3mmのアクリル板を用いて分割パネルを作成した。この分割パネル1枚に補強材6本を25mm間隔で接着した。豊浦砂の材料特性、補強材の材料特性および地盤と補強材の摩擦特性をそれぞれ表-1、表-2に示した。地盤と補強材の摩擦角については一面せん断試験から求めている。補

1)正会員、東京工業大学大学院理工学研究科土木工学科専攻、助手（〒152-8552目黒区大岡山2-12-1）
2)正会員、埼玉大学地圏科学研究センター、教授（〒338-8570さいたま市桜区下大久保255）
表-1 豊浦砂の材料特性 ($D_r=80\%$)

<table>
<thead>
<tr>
<th>特性</th>
<th>価値</th>
</tr>
</thead>
<tbody>
<tr>
<td>平均粒径</td>
<td>D_{40} 0.19 (mm)</td>
</tr>
<tr>
<td>均等係数</td>
<td>U_e 1.56</td>
</tr>
<tr>
<td>最大間隙比</td>
<td>e_{max} 0.973</td>
</tr>
<tr>
<td>最小間隙比</td>
<td>e_{min} 0.609</td>
</tr>
<tr>
<td>間隙比</td>
<td>e 0.682</td>
</tr>
<tr>
<td>透水係数</td>
<td>k 2.0×10^{-4} (m/sec)</td>
</tr>
<tr>
<td>内部摩擦角</td>
<td>ϕ 43.0 (deg)</td>
</tr>
<tr>
<td>乾燥密度</td>
<td>γ_d 15.4 (kN/m3)</td>
</tr>
<tr>
<td>飽和密度</td>
<td>γ_{sat} 19.4 (kN/m3)</td>
</tr>
<tr>
<td>水中密度</td>
<td>γ' 9.59 (kN/m3)</td>
</tr>
</tbody>
</table>

表-2 補強材の材料特性

<table>
<thead>
<tr>
<th>引張り剛性</th>
<th>506.8 kN/m</th>
</tr>
</thead>
<tbody>
<tr>
<td>引抜き摩擦角</td>
<td>δ_s 12.9 (deg)</td>
</tr>
</tbody>
</table>

表-3 実験フロー

1. 遠心加速度 50G まで上昇
2. ① 水位上昇 → 水位下降
3. ② 不飽和状態で振動台実験 (unsat. step1-3)
4. 遠心加速度下降
5. 1G 場で地盤を飽和させる
6. 遠心加速度 50G まで上昇
7. ③ 飽和状態で振動台実験 (sat. step1-7)
8. 遠心加速度下降

図-2 水位上昇の模式図

図-3 鉛直応力分布

（2）実験ケース

本実験では遠心場での水位上昇・下降試験、不飽和土の振動台実験、飽和状態の振動台実験の 3 種類の実験を表-3 に示すような順に行った。各実験の概要を以下の通りである。

① 水位上昇・下降試験

図-2 に水位上昇実験の模式図を示した。遠心加速度 50G 場で流入側ソレノイドバルブを開け、空
圧により土壌上 20mm の高さまでを水で満たした。ただし、空圧が土壌に止水処理を施していないため、
補強士壁前面にも水位がある状態である。これは水圧が士壁の水平方向への変形に対して抵抗力と

② 不飽和地盤の遠心振動台実験

水位を完全に低下させた後、振動台実験を行った。この時、地盤内は完全に乾燥しておらず不飽
和状態にある。そのため粒子間にはサクションが働き、盛土材の強度・剛性は乾燥状態よりも高い
状態にあると考えられる。
図-4 に飽和地盤に対する振動台実験での入力加速度時刻歴を示した。入力波は 100Hz の正弦波で、振幅を徐々に増加させて入力している。不飽和地盤における入力加速度は飽和地盤とはほぼ同様であったが、不飽和地盤では Step1-3 のみを行った。

（3）飽和地盤の遠心振動台実験

飽和地盤の振動台実験では、まず重力場で地盤を飽和させた後、遠心振動を 50G 場まで上昇させ、振動台実験を行った。

図-6 不飽和地盤の地震時沈下挙動

図-7 不飽和地盤の応答加速度

入力波形は図-4 に示したとおりで、Step6 では約 400 波の正弦波を入力した。

3. 実験結果および考察

（1）水位上昇・低下実験

図-5 に水位上昇に伴う補強土壁の沈下時刻歴を示した。水位の上昇により、鉛直有効応力は減少する。その場合、補強材に作用する鉛直有効上荷重も減少し、引抜き抵抗は減少するため、安全率は低下する。しかし、このような水位の上昇に伴う変位は全く見られなかった。

（2）不飽和振動台実験

図-6 に不飽和地盤の振動台実験における沈下時刻歴を示した。振動台実験において安定状態に落ち着いている様子が分かる。沈下量は小さな変位（1.5mm）に抑えられている。また、
Step2 と 3 はほぼ同様の入力波であるが、Step3 で
は Step2 ほどの変形を生じていない。一般的に変
形が進行するに従って剛性が低下すると予想され
るが、補強土壁の場合、変形に伴って補強材の材
力が発生するため、剛性の低下が抑えられるため
と考えられる。

図-7 に不飽和地盤での最大応答加速度分布を
示したが、土壁上方へ約 1.5 倍程度の増幅が見ら
れるが、全体として変形が小ささいため、壁幅方向
への水平変位分の差は見られなかった。

（3）飽和振動台実験
① 過剰間隙水圧の影響
図-8 に地盤内過剰間隙水圧比 Δu/σ′の時刻歴を
沈下量とともに示した。全体を通じて過剰間隙水
圧の有効上載荷重に対する比（Δu/σ′）は 1 とな
ることなく、液状化は生じていなかった。Step2
の 80mm の高さの間隙水圧が、0.08 秒付近で急
激に上昇し、約 20kPa 程度の過剰間隙水圧が生
じている。この時点では他のサンプラーにおいても
大きな変形が見られないため、計測上の不具合か
と考えられる。ほかのステップでは 5kPa 程度の小
さな過剰間隙水圧しか生じておらず、過剰間隙水圧の
増加に伴う沈下速度の増加も見られなかったことか
から、過剰間隙水圧が補強

図-9 飽和地盤の沈下挙動

土壁の安定性に大きく影響を与えないと考えられ
る。そのため、これ以降は過剰間隙水圧の影響を
無視して進める。

② 変形モード
図-9 に飽和地盤の振動台実験における沈下時
刻歴を入力加速度の時刻歴とともに示した。飽和
地盤と比較して、非常に大きな変形を示している。
図-10 に飽和地盤での最大応答加速度分布を
示した。不飽和地盤と同様に上部で 1.5 倍程度の
増幅が見られた。また土壁中腹の A12 の応答が、
不飽和地盤と比べて小さな傾向が見られる。この
要因については次の比較の節において述べる。全
体として、A12 を除いて不飽和地盤と同程度の加
速度を受けていると考えられる。

図-11 に、ターゲットの変位量から求めた水平
変位分布を示した。さらに図に示したように水平
変位を「滑動量」「上部せん断変位」「下部せん
断変位」の 3 つに分け、それぞれの変位成分を振
動ステップ順にプロットしたのが図-12 である。
これから土壁下部のせん断変位と増動が顕著であ
ることが分かる。全ステップを通して上部のせん
断変位は非常に小さく抑えられている。Step3 ま
では下部のせん断変位が卓越しているが、Step4以降はほとんどせん断変位を生じず、滑動量が支配的となってくる。また、図-13にStep3およびStep4終了後の最大せん断ひずみ分布を示した。Step3でも壁面かかとにせん断ひずみが集中し始めているが明確なすべり線ではなく、Step4で明らかすべきり線が発生している。このために滑動量が卓越したと考えられる。写真-1に実験終了後の地盤内部の様子を示した。土壁上部はほとんど変形がなく、土壁下部が圧縮及びせん断している様子が分かる。

以上から、飽和地盤では平時は安定状態にあるものの、地震時には大きな変形を生じることが分かった。また、すべり線が発生するまでは補強領域下部のせん断変形が卓越し、すべり線発生後は滑動変位が大きくなる。次節からは、これらの要因に水位が与える影響を考察する。

(4) 不飽和地盤と飽和地盤の比較
不飽和および飽和補強土壁の振動台実験結果から、完全な崩壊には至らないが、飽和状態で耐震性が低下することが確認された。この低下の原因は、有効拘束圧の低下による引抜き抵抗の減少と地盤材料の剛性の低下が挙げられる。ここでは、この二つの要因について検討した。

① 地盤剛性の低下
一般的に地盤材料のせん断剛性は有効拘束圧の
べき乗に比例する。飽和状態では有効圧拘束応力が低下するため、補強土壁のせん断剛性も低下し、耐震性が低下すると考えられる。ここでは、加速度計の結果を用いて補強領域のせん断剛性の低下を検証した。補強領域のせん断変形を図-14のように仮定し、せん断応力とせん断ひずみを次式からそれぞれ求めた。

せん断応力：\(\tau = \rho H_1 A_{11} + \rho H_2 \frac{H_2}{2} A_{12} \)

せん断ひずみ：\(\gamma = \frac{\int H_1 - A_{11} - A_{12}}{H_2} \)

※ \(\rho \) ：密度

この方法から求めた変位の絶対値は、実際と一致しないとされているが、ここではせん断剛性の絶対値の比較ではなく、相対的に飽和と不飽和での
違いを検証することを目的としている。図-15 に不飽和、飽和それぞれのせん断ひずみ-せん断応力関係を示し、その傾きから求めたせん断剛性をステップごとに図-16 に示した。

全ステップを通じて飽和地盤の方が小さな剛性を示した。また Step1 では不飽和に比べて約 70% であるが、Step2 以降は約 25% まで低下した。しかし、Step2 以降、補強土壁の変位は進行していてもかかわらず、両者とも剛性を保ち続けている。これは二つの要因があると考えられる。一つは、下部のせん断変形が生じるものの補強領域が全体として滑動するため、残留せん断ひずみは小さく、せん断剛性に影響を与えないこと。2 点目は、Step2 以降の入力加速度がほぼ同じであったため、補強領域に与えるせん断ひずみが増加しなかったことである。ここで、土は同じひずみレベルの繰り返しを行った場合、繰り返し回数が増加すると剛性が低下すると言われているが、今回の実験では約 400 波を与えた Step6 以外は、繰り返しの影響も見られなかった。これは地盤のひずみにより補強材の張力が加わり、その張力が逆に地盤に作用することにより、拘束圧の増加→剛性の低下防止となったと考えられる。

② 引抜き抵抗の減少

飽和地盤の振動実験では Step4 以降で補強土壁は明確なすべり線を生じ、その後の滑動変位が顕著に大きくなった。したがって、すべり土塊の滑動に抵抗する引抜き抵抗が、安定性を左右すると考えられる。引抜き抵抗を左右する地盤材料のせん断摩擦角ϕと引抜き摩れ角δ，自体は乾燥状態、飽和状態では変わらず、有効上載圧σv によってせん断抵抗σv 、tanϕ および引抜き抵抗σv 、tanδ が変化する。乾燥地盤の有効鉛直圧は乾燥密度 15.4kN/m3×上載圧であるのに対して、飽和地盤では水中密度を用いた 9.59 kN/m3×上載圧と、約 6 割まで低下する。この有効鉛直圧の低下による安定性の低下が、補強土壁全体の安定性に与える影響を、Two-Wedge 法を用いた安定解析で評価した。図-17 に仮定した破壊断面を示した。この計算では、Wedge B の滑動に対する安全率を求めている。不飽和状態のサクセションの定量的な評価が難しいため、乾燥状態と飽和状態の 2 ケースの計算を行った。また、今回の実験では補強土壁法勾から 7 列目の補強材端部にかけたすべり線が発生しているため、Wedge B のすべり線は固定して計算した。

図-18 に水平震度と滑動に対する安定率の関係を示した。飽和地盤では水平震度 0.24 で安定率は 1 を下回り、乾燥地盤では水平震度 0.47 で 1 以下となった。つまり裏込め土が飽和することにより、安定性は 1/2 程度まで低下する。これは飽和することによって有効鉛直圧の減少が約 6 割になることに比べて、大きな減少となっている。これから、飽和することによる鉛直有効上載圧の低下によって引抜き抵抗力が低下することが、補強土壁の滑動に対して非常に大きく影響することが分かった。

4. まとめ

不飽和・飽和状態での補強土壁の遠心振動台実験から以下の知見が得られた。

1. 補強土壁内の水位を上昇させても、常時の安定性は確認できた。
2. 乾燥・不飽和状態の補強土壁は、ひずみの増加による顕著な剛性の低下が見られなかった。これは補強材引張力による拘束圧の増加によるものと考えられる。
3. 飽和状態の補強土壁は不飽和状態に比べて大きな変形を生じた。特に補強領域下部のせん断変形、全体となった補強領域の滑動が主な変位成分であった。この原因として、有効拘束圧の低下による引抜き抵抗の減少が地盤材料の剛性の低下が挙げられる。
4. 飽和状態のせん断剛性は不飽和状態に比べて約 75% 程度であったが、振動を与えることにより、約 25% 程度まで低下した。しかし、その後同程度の加速度を数回受けても剛性は低下しなかった。
5. 飽和することにより補強材の引抜き抵抗が減少し、滑動に対する安定率は 1/2 程度まで低下する。

参考文献

1) 土木学会・平成 16 年新潟県中越地震第二次調査団、「調査結果と緊急提言」I 報告・提言編, 2004. 12
3) 財団法人 土木研究センター、補強土 (テールアルメ) 壊工法 設計・施工マニュアル, 第 3 回改訂版, 平成 15 年 11 月
5) 井澤 淳, 高橋章浩, 桑野二郎, ジオグリッドの特性が補強盛土の地震時安定性に及ぼす
Effect of saturation on seismic stability of reinforced soil wall

Jun IZAWA and Jiro KUWANO

KEYWORD: Centrifuge model test, Shaking table test, reinforced soil wall, saturated soil

This paper is intended as an investigation of effects of saturation on seismic stability of reinforced soil wall. For that purpose, the centrifuge shaking table test series was conducted with unsaturated and saturated model reinforced soil wall and residual deformation and deformation mode of reinforced soil wall during earthquake were compared. Moreover, shear stiffness of reinforced area was determined by using the time histories of acceleration. As a result, it was conducted that stability against sliding of the saturated soil wall was very smaller than that of the unsaturated one because pullout resistance decreased due to reduction of effective confining pressure.