SICE Journal of Control, Measurement, and System Integration
Online ISSN : 1884-9970
Print ISSN : 1882-4889
ISSN-L : 1882-4889
CONTRIBUTED PAPERS
Controller Parameter Tuning for Systems with Hysteresis and Its Application to Shape Memory Alloy Actuators
Yuji WAKASAShinji KANAGAWAKanya TANAKAYuki NISHIMURA
Author information
JOURNALS FREE ACCESS

2012 Volume 5 Issue 3 Pages 162-168

Details
Abstract

This paper proposes a simple controller parameter tuning method that can compensate for hysteresis. The proposed method is based on the so-called fictitious reference iterative tuning (FRIT) technique which can easily tune controller parameters such as proportional-integral-derivative gains using a one-shot closed-loop experimental data. In the proposed framework, a simple hysteresis model is introduced to a control system, and its inverse is used as a hysteresis compensator. Since the hysteresis model is characterized with only three parameters, the related computational burden is moderate in the parameter tuning process. Also, the proposed FRIT method needs an only one-shot experiment as in the standard FRIT one, which implies that the feature of FRIT is well-maintained. In the optimization process, the so-called covariance matrix adaptation evolution strategy is used for simultaneously searching hysteresis parameters as well as controller parameters. The proposed FRIT method is applied to an experimental control system that comprises a shape memory alloy actuator, and its effectiveness is verified.

Information related to the author
© 2012 The Society of Instrument and Control Engineers
Previous article Next article
feedback
Top