SICE Journal of Control, Measurement, and System Integration
Online ISSN : 1884-9970
Print ISSN : 1882-4889
Special Issue on SICE Annual Conference 2015
Molecular Governor: DNA Feedback Regulator for Molecular Robotics
Takashi NAKAKUKIJun-ichi IMURA
Author information
JOURNALS FREE ACCESS

Volume 9 (2016) Issue 2 Pages 60-69

Details
Download PDF (1254K) Contact us
Abstract

In this study, we consider a regulation problem for molecular robotics realized by DNA reactions. The control objective is to regulate the concentration of a target DNA strand to a desired level using practical DNA circuits. This is a challenging problem as regards to the architecture of the molecular robot, because of the corresponding positiveness, modularity, and finiteness problems. A DNA comparator-based controller with DNA amplifiers is proposed, and it is shown to successfully achieve the control objective. The properties and the stability of the system are evaluated in terms of both retroactivity and the Lyapunov stability theory for a positive second-order system. To the best of our knowledge, this is the first study to realize a regulator in a practical DNA reaction system for molecular robotics.

Information related to the author
© 2016 The Society of Instrument and Control Engineers
Previous article Next article

Recently visited articles
feedback
Top