詳細な誤情報が虚記憶に及ぼす影響：共同想起場面で誤情報が他者によって示された場合

星野祐司・山田桃子（立命館大学）

Effects of detailed misinformation on false memory when presented by another person in collaborative recall

Yuji HOSHINO and Momoko YAMADA (Department of Psychology, College of Letters, Ritsumeikan University, Kyoto)

The effects of detailed misinformation about unseen items on false recall are examined. Pairs of participants saw pictures of six scenes. Half of the participants were presented with three critical items that were not seen by the other participants. In a subsequent collaborative recall test, the participant pairs orally reported about items included in each scene. Under an item condition, the participants were asked to recall item names, while under a detail condition, the participants were asked to recall item names, together with information about their colors, shapes, and locations. In this way, the participants who had not seen the critical items would hear misinformation about them during the test. On completion of the test, individual recall tests were conducted, as well as remember/know judgments about the recalled items. The frequencies of false recalls for critical items did not differ under the item and detail conditions. Remember judgments for false recalls were observed in the item condition but not in the detail condition. These results are discussed in terms of source monitoring.

Key words: false memory, misinformation effects, remember/know judgments, collaborative recall, source monitoring

見ていない項目に関する詳細情報が虚再生に及ぼす影響について検討した。実験参加者は対になって6つの場面の画像を見た。の半数の参加者には、残りの半数の参加者が見ていない3つの独自項目が提示された。引き続き行われた共同再生テストでは、2名の参加者が各場面に含まれていた項目を口頭で報告した。項目条件では項目の内容についての再生が参加者に求められた。詳細条件では項目の内容、色、形、場所を再生することが参加者に求められた。したがって、共同想起において独自項目を見ていない参加者は独自項目に関する誤情報を聞く可能性があった。共同想起の終了後、個別再生テストが実施され、再生項目に対してremember/know判断を求めた。項目条件における独自項目についての虚再生の頻度は詳細条件における虚再生と同程度であった。項目条件では虚再生に対するremember判断が観察されたが、詳細条件では観察されなかった。これらの結果についてソースモニタリングの観点から考察した。

キーワード：虚記憶、誤情報効果、remember/know判断、共同想起、情報源モニタリング

1) 本論文は第2著者である山田桃子が立命館大学文学研究科学科に提出した2003年度修士論文に基づいている。
2) 本研究の一部は日本学術振興会科学研究費補助金（基盤研究B2、課題番号14310045、代表者：松田隆夫）および文部科学省オープンリサーチセンター整備事業（臨床人間科学の築基ー対人援助のための人間環境研究、代表：望月昭）による補助を受けた。

153
の情報源に関するテストを用いて誤情報効果について検討した。画像に示された項目か、それとも画像提示後の質問文に記述されていた項目であるのかを尋ねると、誤情報効果が現れない場合が見出され、これらの結果は、誤情報を持たせた記述が提示された後でも、元の画像に関する記憶は利用可能であることを示すと考えられる。

誤情報による虚記憶は、項目をどれだけ覚えていたかという観点において、記憶が実際にどれだけ正確に対応しているかという側面が重要であることを示唆している（Koriat, Goldsmith, & Pansky, 2000）。同時に、誤情報によって虚記憶の生成に関与すると考えられる社会的相互作用に関する検討も重要である。Betz, Skowronski, & Ostrom (1996) は、2 名の実験参加者が同時に単語リストを学習し後に実施した再認記憶テストにおいて、判断の同調が現れることを示し、2 名の実験参加者は、同一の学習語リストが提示されていたと信じていたのであるが、提示された学習語リストの一部は一致していないかった。再認記憶テストでは、2 名の参加者が順番に各項目に対し学習語リストに含まれていたかどうかを判断した。後続の参加者の反応が先行する参加者の反応に同調する傾向が示された。特に、先行の参加者にとって学習語であり、後続の参加者にとって新しく提示された単語である場合には同調が強く見られた。

Betz, Skowronski, & Ostrom (1996) は、実験参加者が短い物語を読んだ後に行われた再認記憶テストで、コピーチャートにより操作された誤情報が他者の反応としてモニター上に複数提示される場面を設定して、社会的影響による虚記憶について検討した。参加者には、便宜に課題を行っている他の参加者の反応が画面に表示されることがあり教示された。再認記憶テストの終了後に行われた手がかり再生テストでは、再認記憶テストで示された他者の反応と一致する項目を産出す傾向が見られた。Betz et al. は、再認記憶テストで示された他者の反応を参加者がどの程度覚えているのかについて検討している。その結果、誤情報は再認記憶テストにおいて示された他者の反応であることを参加者が覚えていない場合であっても、誤情報についての虚記憶が手がかり再生テストにおいて出現することが示された。他者の反応であるとわかっているにもかかわらず、その反応に従うことができ同調であると考えられるので、他者の反応に対する同調のみによって手がかり再生での虚記憶を説明することはできないと考えられる。

Roediger et al. (2001) および Meade & Roediger (2002) は、共同想起場面で実験協力者が誤情報を示す方法を用いて虚記憶における社会的影響について検討した。実験では、提示された画像について共同想起が行われた後に、個別の再生テストが実施された。共同想起では、1 名の実験協力者と 1 名の実験参加者が交互に再生を行うことが求められた。実験協力者は、提示された画像に含まれていなかった項目を共同想起において報告することが訓練されていた。個別の再生において実験参加者は、実験協力者が共同想起の段階で産出した非提示項目を虚再生することが確認された。さらに虚再生された項目について、その参加者が提示されたときの状況やそのとき考えていたことを覚えているかどうかについての判断が参加者に求められた。提示された状況を覚えている場合は remember 判断とし、そうでない場合を know 判断とされた（Tulving, 1985）。社会的影響により虚再生された項目については、remember 判断より know 判断が増えることが明らかになった。

今回の実験では、実験参加者の共同想起場面での不一致を引き起こすために、偏光フィルターを使用して一部が異なる画像を 2 名の実験参加者に提示する方法を用いた（Mori, 2003）。2 台のプロジェクターからの光を通じて偏光フィルターに通過し、参加者はスクリーン前方より偏光フィルターを通して一方のプロジェクターから投影された画像を見た。一部が異なる画像を被験者に提示する方法には、共同想起において誤情報報告する実験協力者を訓練する必要がない利点がある。一部が異なる画像を提示する方法としては、偏光フィルターを用いる方法以外に、2 名の参加者がそれぞれ別の場所（あるいは、モニター）に提示された画像を見る方法が用いられている（Gabbert, Meemon, & Allan, 2003）。Wright, Self, & Justice, 2000）。Gabbert et al. は同じ出来事に異なる角度から撮影した短いビデオ映像を用いて、一部が異なる映像を提示する実験を行っている。異なる場所に提示する方法と比較して偏光フィルターを用いる方法では提示装置が複雑になるが、同じ場所に異なる映像を投影できるので、2 名の参加者が異なる映像を見ていたことに気づく可能性を低くすることができる。

2 名の実験参加者による共同想起において、一方の参加者は見えない項目について、もう一方の参加者が詳しく報告することは、その後の個別再生における虚記憶にどのような影響を及ぼすのであろうか。今回の実験では、画像提示の段階で、2 名の参加者が同時に画像を観察した。しかし、一方の参加者があらかじめ画像に含まれているか、もう一方の参加者が見た映像に含まれていない対象を提示した。共同想起において 2 名の参加者が交互に再生を行う際、画像に存在していた
対象の名前を再生する項目条件と、対象の名前に加えて対象の色と形、および対象が存在していた場所を述べる詳細条件とを比較した。共同想起の段階で述べられる詳細情報は独自項目の虚再生にどのような影響を及ぼすのであろうか。

Garry, Manning, Loftus, & Sherman (1996) は、出来る事を経験した場面想像することが、子どもの頃の出来事についての虚記憶に及ぼす影響を検討した。実験では、まず、いくつかの出来事について子どもの頃に実際に経験した可能性を評定するので実験参加者に求められた。その後、出来事をの短い記述を読み、子どもの頃にその出来事を経験する場面に詳細な想像することが求められた。その結果、子どもの頃に経験した可能性が低いと評定された出来事については、経験した場面を想像することによって、出来事を子どもの頃に経験したとする評定値が想像しなかった場合と比べて高くなることが見出された。このような現象を Garry et al. (1996) はイメージ膨張 (imagination inflation) と呼んだ、今回の実験における共同想起で述べられる詳細情報はイメージ膨張を引き起こし、独自項目についての虚記憶を強める可能性がある。一方、共同想起場面での詳細情報の報告は、記憶の情報源を明確化すると考えられる。共同想起で報告された対象を画像の中に存在していたとする情報源の混乱が虚記憶を引き起こすのであれば (Lindsay & Johnson, 1989)、共同想起において一方の実験参加者が独自項目についての詳細を述べることは、その項目に関する記憶の情報源を明確にし、もう一方の参加者による個別再生テストでの虚記憶を抑制することが予想できる。上記の予測を検証する指標として、個別再生における独自項目についての虚再生率とともに虚再生に関する remember/know 判断を用いた。

学習段階での画像の提示時間は全体の記憶成績と虚記憶の生成に影響を及ぼす要因であると考えられる。Roediger et al. (2001) は 15 秒と 60 秒の提示条件を、Meade & Roediger (2002) は 5 秒と 15 秒の提示条件を比較している。これらの実験は、画像の提示時間が 15 秒の条件で個別再生における虚再生が最も多いことを示していた。今回の実験では、画像の提示時間が 15 秒の条件と 30 秒の条件を比較した。15 秒の提示条件と比較して提示時間が 30 秒の条件では、画像に関する記憶が正確になり、共同想起の影響を受けた虚記憶の減少が予想できる。

実験では、独自項目を提示されていない実験参加者が、独自項目を提示された実験参加者と共同想起することにより、共同想起後の個別再生において、実際に見ていない独自項目をどの程度虚再生するかが検討された。実験の目的は、独自項目に関する詳細情報を共同想起の相手が述べることによって、個別再生における虚記憶の生成が促進されるか、それとも抑制されるかを検討することであった。詳細情報により実際には見えていない対象の心的イメージが構成され、個別再生における虚再生が促進される可能性がある一方、詳細情報の提示は記憶の情報源を明確にし、虚再生を抑制する可能性が考えられる。

個別再生での虚再生は、共同想起場面での独自項目の再生により誘発される場合のほかに、個別再生における自発的産出による場合も考えられる。共同想起において独自項目が再生されない場合に産出される虚記憶と、共同想起において独自項目が再生された場合の虚記憶を比較するために、独自項目を含む画像が提示されずに共同想起と個別再生を行う条件を統制群として実験に含めた。以下では独自項目が含まれている画像を用いる条件を一致条件、独自項目が含まれていない画像を使用しない条件を一致条件と呼ぶ。独自項目が提示されない点以外の条件については述べられない限り、一致条件と一致条件の実験手続きは同一であった。

**実験計画**

独自項目を含む画像が示されるかどうか（一致、一致）、共同想起（項目、詳細）、提示時間（15 s、30 s）の 3 要因からの計画であり、いずれも参加者間要因であった。共同想起において画像に含まれていた対象の形状を報告する項目条件と、項目名とともに色、形、位置の情報の報告を行う詳細条件とが比較された。また、学習時にされる各画像の提示時間は 15 s と 30 s のどちらかであった。

**実験参加者**

平均年齢が 21.8 歳の 82 名（男性 41 名、女性 41 名）が一致条件に割り当てられた。そのうちの 22 名は画像の提示時間が 15 s と設定された詳細条件に、残りの 3 条件には、それぞれ 20 名の参加者が割り振られた。一致条件には平均年齢 20.8 歳の 32 名（男性 21 名、女性 11 名）が割り当てられた。共同想起の条件と提示時間が異なる 4 条件に 8 名の参加者が割り当てられた。2 名の参加者が前後に実験に参加する際、2 名の年齢、性別、緊密度は制限されなかった。

**材料**

室内の 6 場面（勉強机、風呂場、玄関、シンク周り、押し入れ、開閉した冷蔵庫）をデジタルカメラで撮影した画像を用いた。6 場面に通常存在すると思われる物に関する予備調査を撮影前に実施し、その結果を参考にして各場面に含まれる項目を決定した。独自項目を選択するための予備実験として、作成した 6 画像についての再生テストを上記の予備調査に参加しなかった 10 名に実施した。この予備実験では、1 画像の提示時間が 30 秒、画像間の隔間が 5 秒であった。さらに、すべての画像を提示し
てから1分間の遅延の後、筆記により再生を行った。各画像について最も多く再生された1項目を独自項目の候補とした。

独自項目が実際に提示されたのは、“勉強機”、“玄関”、“押し入れ”の3項目であった。それぞれの独自項目はノート型パソコン、靴、木箱である。独自項目を含む画像には16項目が写されていた。独自項目が提示される3場面を以下では独自項目場面とする。ただし、一致条件では、独自項目場面であっても独自項目を含む画像は使用しなかった。独自項目を含まない画像は、画像編集ソフトを用いて独自項目を含む画像から独自項目を削除して作成した。残りの3項目（風呂場、シンク周り、開扉した冷蔵庫）では独自項目が提示されなかった。独自項目を含まない場合、各画像に含まれる項目数は15項目であった。使用した6種類に含まれる項目を付録Aに示した。

学習用の画像のほか、練習用の画像として絵画作成道具（鉛筆、顔料、パレットなど）を配置した画像を用いた。

装置

1台のパソコン（DELL Dimension XPS T650R）に、ディスプレイ分割器を介して接続された2台のDLPプロジェクト（PLUS V-1100）を用い、リア・スクリーン（横78 cm、縦62 cm）にスライドを投影した。スライドの提示はMicrosoft Power Pointを用いて制御した。

1台のパソコンを用いて同一場面に異なる画像を提示するために、1台のプロジェクトから投影されるスライドの左半分、もう1台のプロジェクトから投影されるスライドの右半分がリア・スクリーンの同一平面に重なって投影された。投影されるスライドの左半分と右半分には、それぞれ、独自項目を含む画像と独自項目を含む画像が配置されるか、あるいは同じ画像が配置された。2つのプロジェクトからの投影は互いに直行した偏光によって、それぞれのプロジェクトから投影されるスライド左半分の画像と、もう1方のプロジェクトから投影されるスライド右半分の画像がリア・スクリーンの中央部分で重なるように、プロジェクトのレンズ前面に偏光フィルターが置かれた。片方のプロジェクトから投影されるスライド左半分の画像と、もう1方のプロジェクトから投影されるスライド右半分の画像がリア・スクリーンの中央部分で重なるように、プロジェクトの向きとリア・スクリーンの位置を調節した。2つのプロジェクトからの画像が重なって投影される中央部分以外には映写されないよう、リア・スクリーンの両端を黒い紙で覆った。リア・スクリーンの中央の刺激投影部分は、横33 cm、縦55 cmであった。

参加者は前に置く衝立（横30 cm、縦40 cm）を黒い厚紙を用いて作製した。衝立には小さな黒（横15 cm、縦3 cm）が設けられた。プロジェクトの反対側に2名の参加者が並んで席をし、それぞれの参加者に前項目に置かれた衝立を通して、リア・スクリーンに投影された画像を観察した。衝立を立てる窓には、互いに直行する偏光を通す偏光フィルターが貼られたため、2名の参加者はスクリーン上の同じ投影面を観察しているにもかかわらず、異なるプロジェクトから投影された画像を観察した。リア・スクリーンと衝立の距離は130 cmであり、2つの衝立は約10 cm離して並べられた。

手続き

参加者は2名1組になって実験室に入室し、機の上に横並びに置かれた2つの衝立の前にそれぞれ着席した。参加者には、明確な目的を明示し、自由に観察を求めることが目的であるので、衝立の小窓からスクリーンに映し出される画像をよく見て、画像中にある物を覚えるよう教示した。参加者がどちらに着席するかは指定しなかった。一致条件では片方の衝立から独自項目が見えなかった。もう片方の衝立からは独自項目が見えなかった。一致条件ではどちらに着席しても提示される画像は同じものであり、独自項目は提示されなかった。

学習用の刺激画像を提示する前に、1枚の練習用画像を用いて共同想起の練習を行った。参加者が衝立の小窓から観るような姿勢を取っていることを確認してから、6枚の刺激画像を順に提示した。各画像を提示する前に、画像の名称を実験者が口頭で参加者に告げた。刺激画像は他の参加者にも同一の順序で提示された。勉強機、風呂場、玄関、シンク周り、押し入れ、開扉した冷蔵庫の順であった。一致条件では、独自項目を含む場面と、独自項目が含まれない場面が交互に提示された。一方、一致条件では独自項目を含む画像は提示されなかった。1枚の画像提示時間は、提示時間に依存して15秒から30秒であった。刺激画像提示後、空白画面を5秒間提示し、次の刺激画像を提示した。

すべての刺激画像を提示した後、挿入課題として2柄の足し算を行った。衝立を外して、足し算問題用紙を配布した後、2分間計算を行った。計算用紙を回収後、画像提示と同じ順序で、各画像についての共同想起が行われた。

共同想起場面では2名の参加者が交互に口頭で再生し、実験者が再生項目を記録用紙に書き取った。各画像についての共同想起を開始する前に、画像の名称を実験者が口頭で告げた。一致条件における独自項目場面についての共同想起では、独自項目を提示された参加者から再生を行った。また、独自項目が出現しない場面では、独自項目を提示されない参加者から再生を始め、一致条件では、再生をどちらの参加者から始めるかについてあらかじめ決めていなかった。項目条件の参加者には、画像中にあった物の名称を2人で交互に1つずつ告げ
るように教示した。詳細条件の参加者には、名称に加えて、対象の位置、色、形を相手に伝えるように教示した。各画像についての再生数が2名の合計で10項目になるか、両参加者が思い出せないと言ったところで次の画像に移った。再生した項目を参加者が忘れてしまった場合、参加者からの質問に答えたが、再生された項目の正確については答えなかった。参加者が詳細情報の報告を誘導するような場合には、実験者が報告を促すようにした。

共同想起後、参加者は個別再生テストを行った。参加者を指示よりで分け、参加者どうしがお互いの様子を確認できないように配慮した。個別再生用に、各画像の名称を上部に記したA4判用紙6枚を提示画像と同様に順に渡った冊子を配布し、画像中にある物をできるだけ思い出して書くことを参加者に求めた。その際、自分が見たもののみを書くように教示した。詳細条件の参加者には、詳細を書く必要はなく名称のみを書くように教示を付け加えた。制限時間は設けず、参加者ができたと思うところまで実験者に声をかけるように教示した。

参加者が個別再生を終えたところで、remember/know 判断の段階に移った。再生した各項目について、その項目を見たときのことが(たとえば、とき考えたことなど)を思い出し、その項目の位置、色、形などを特定できる場合には丸 (remember 判断) を、そうでない場合には三角 (know 判断) をつけるように教示した。

個別再生テストと remember/know 判断の終了後、参加者に感想を求めた。また、両参加者が違う画像を見ていたことに気づいたかどうかについて確認した。その後、虚偽の記憶の実験であることを明らかにし、刺激提示装置と虚偽の記憶について簡単な説明を行い、実験を終了した。

結 果

一致条件では、実験参加者による独自項目の自発的な産出を検討するために、独自項目場面であっても2名1組の参加者に同一の画像が提示された。不一致条件において2名の実験参加者が異なる画像を見ていたことに気づいた参加者はいなかったので、すべての参加者について分析を行った。以下の統計解析では検定の有意水準を 5% に設定した。

一致条件

個別再生での独自項目場面（勉強用，文書，押し入れ）に関する再生数を Table 1 に示した。共同想起と提示時間の2要因を参加者間要因とする分散分析は、提示時間の主効果のみが有意であることを示していた (F(1,28) = 4.8, p = .04, MSE = .017)、提示時間が 15 s と 30 s における平均再生率はそれぞれ .43 (SD = .12) と .53 (SD = .14) であった。再生項目についての remember 判断と know 判断の割合を Table 1 に示した。どの条件でも、remember 判断の割合が know 判断の割合の7倍以上であり、正再生については remember 判断が優勢であることがわかった。

共同想起および個別再生のどちらにおいても、独自項目は産出されなかった。独自項目場面についての個別再生において、独自項目以外に、画像に含まれていない項目が産出された数は1画像あたり平均 0.13 (SD = 0.20) であった。

不一致条件

独自項目を提示された参加者が共同想起において独自項目を再生する割合は高く、どの条件でも8を超えていた。項目条件における独自項目の再生率は、画像の提示時間が 15 s と 30 s の場合、それぞれ .83 (SD = .24) と .90 (SD = .16) であった。詳細条件では、提示時間が 15 s と 30 s の場合、それぞれ .82 (SD = .27) と .87 (SD = .23) であった。共同想起と提示時間の 2 要因を参加者間要因とする分散分析を行ったところ、有意な効果は見られなかった。

独自項目場面において、独自項目を提示されなかった参加者による個別再生での正再生率を条件別に求めた (Table 2)。共同想起と提示時間の2要因を提示時間の 2 要因を参加者間要因とする分散分析を行った結果、提示時間の主効果のみが有意であった (F(1,37) = 14.16, p = .001, MSE = .012)。提示時間が 15 s と 30 s における平均再生率はそれぞれ .44 (SD = .12) と .56 (SD = .10) であった。再生項目についての remember 判断と know 判断の割合を

Table 1

<table>
<thead>
<tr>
<th>Presentation rate</th>
<th>Recall</th>
<th>Remember</th>
<th>Know</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item condition</td>
<td>.49 (.11)</td>
<td>.43 (.12)</td>
<td>.06 (.02)</td>
</tr>
<tr>
<td>Detail condition</td>
<td>.52 (.14)</td>
<td>.46 (.14)</td>
<td>.05 (.05)</td>
</tr>
</tbody>
</table>

Note. Values enclosed in parentheses represent SDs.
Table 2
Proportion correct recall for the items included in the critical scenes under the incongruent condition

<table>
<thead>
<tr>
<th>Presentation rate</th>
<th>Recall</th>
<th>Remember</th>
<th>Know</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 s</td>
<td>.46 (.14)</td>
<td>.40 (.16)</td>
<td>.06 (.04)</td>
</tr>
<tr>
<td>30 s</td>
<td>.61 (.12)</td>
<td>.52 (.16)</td>
<td>.09 (.07)</td>
</tr>
<tr>
<td>Detail condition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 s</td>
<td>.41 (.10)</td>
<td>.35 (.09)</td>
<td>.07 (.05)</td>
</tr>
<tr>
<td>30 s</td>
<td>.52 (.06)</td>
<td>.44 (.09)</td>
<td>.08 (.06)</td>
</tr>
</tbody>
</table>

Note. Values enclosed in parentheses represent SDs.

Table 3
The number of false recalls for the critical items under the incongruent condition

<table>
<thead>
<tr>
<th>Presentation rate</th>
<th>Response type</th>
<th>Remember</th>
<th>Know</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 s</td>
<td>Item condition</td>
<td>4</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>30 s</td>
<td></td>
<td>2</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Detail condition</td>
<td></td>
<td>0</td>
<td>17</td>
<td>10</td>
</tr>
<tr>
<td>15 s</td>
<td></td>
<td>0</td>
<td>9</td>
<td>17</td>
</tr>
<tr>
<td>30 s</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note. “No” indicates that the critical items were not falsely recalled.

4) Table 3では、一人の実験参加者による、異なる独自項目についての虚再生の生産を独立した反応とみなして集計した。一人の実験参加者が繰り返した反応を集計することとは統計学的には望ましいことではないが（Howell, 2002, pp. 159–160）、今回の実験では、異なる場面について、多くの項目を再生する中で生産した特定の虚再生であったので、それぞれを独立であるとみなした。付録Bに個々の実験参加者が独自項目を虚再生した割合について分析した結果を示した。

5) 独自項目面面（勉強用、奥深、先生、押し入れ）を要因に加え、4要因の階層的対数線形分析を行った場合、独自項目面面の主効果、および他の要因との交互作用はいずれも有意ではなかった。

Table 2 に示した、どの条件でも、remember 判断の割合が know 判断の割合の 5 倍以上であり、正再生については remember 判断が優勢であることがわかる。

独自項目を提示されなかった参加者が、独自項目場面に関する個別再生において独自項目を虚再生した場合の remember 判断と know 判断の頻度、および虚再生が現れなかった場合の頻度を条件別に Table 3 に示した。

Table 3 には、独自項目を提示された参加者が同一想起において独自項目を再生した場合に、その参加者と対になっていった参加者が個別再生において独自項目を虚再生していたかどうかが示されている。独自項目を提示された参加者が共同想起において独自項目を再生していないにもかかわらず、その参加者と対になっている参加者が個別再生において独自項目を虚再生した場合は 4 回あった。それらについては Table 3 に含めなかった。

Table 3 に示した数値について、2（共同想起：名称、詳細）×2（提示時間：15 s, 30 s）×3（虚再生：remember, know, なし）の階層的対数線形分析を行った。
その結果、共同想起と虚再生の交互作用のみが有意であった（\( \chi^2(2) = 9.10, p = .01 \)）。
提示時間の要因を除くと、remember 判断、know 判断、虚再生なしの度数は、項目条件においてそれぞれ 6, 20, 27、詳細条件においてそれぞれ 0, 26, 27 であった。
共同想起と虚再生の 2 変数が独立であると仮定した残差分析は、詳細条件よりも項目条件において remember 判断が多く出現したことを見ていた。

Table 3 における remember 判断と know 判断をまとめて 1 つのカテゴリーにし、2（共同想起×2（提示時間）×2（虚再生：あり、なし）の階層的対数線形分析を行うと、有意な効果はなかった。しかし、有意に近い交互作用が提示時間と虚再生の間に見られた（\( \chi^2(1) = 3.80, p = .051 \)）。虚再生が出現した度数と出現しなかった度数は、提示時間が 15 s のときそれぞれ 31 と 22 であり、30 s のときそれぞれ 21 と 32 であった。

独自項目場面についての個別再生において、独自項目を提示されなかった参加者が、独自項目以外に、画像に含まれていない項目を産出す数は 1 画像あたり平均 0.21 (SD = 0.24) であった。侵入項目は比較的少ないことがわかる。

考察

一致条件の個別再生において独自項目についての虚再生が出現しなかったことから、不一致条件の個別再生で現れた虚再生は共同想起場面で示された誤情報の影響によると考えられる。一致条件の個別再生において独自項目が自発的に虚再生されなかった原因の 1 つとして、使用した画像の特性を考えることができる。独自項目は、画像の中に提示された場合、多くの参加者が再生すると予想される項目であった。不一致条件の共同想起において独自項目が再生されない試行は全試行の 14%にとどまり、ほとんどの独自項目が共同想起場面で再生された。
星野・山田：詳細な誤情報が虚記憶に及ぼす影響

しかし、独自項目が提示されなかった一致条件では、共同想起および個別再生のどちらにおいても独自項目が発的に産出されなかった。独自項目が画像に含まれていない場合、画像が示す状況や画像に含まれている対象から独自項目が連想的に生成されやすい特性は持っていなかったと考えられる。記憶の理由に加えて、個別再生において独自項目が一方で産出されなかった要因として、独自項目を含む画像が提示されなかったために、共同再生の場面で記憶の不一致が起こりにくい状況であった点が挙げられる。もしそうであるならば、共同想起での不一致は、その後の個別再生における参加者の検索過程に妨害的影響を及ぼす可能性が考えられる。

一致条件の詳細条件と項目条件において、独自項目についての虚再生が同程度出現したことから、共同想起場面で独自項目に関する詳細情報（色、形、位置）が述べられるか、それとも独自項目の名もし述べられたかは虚再生の出現に影響を与えないことが明らかになった。しかし、項目条件では虚再生の一部にremember判決が示されたのに対して、詳細条件ではremember判決が示れなかった。今回の実験では、6面での関連する個別の再生テストを終了した時点でremember/know判決が行われた。このことから実験参加者は再生した語についての再認記憶に基づいてremember/know判決を行っていたと考えることができる。正再生に対してはremember判決が優勢であり、虚再生についてはknow判決が多かったことから、再生終了後であっても参加者は一定の基準を用いてremember/know判決を行っていたと推察できる。また、虚再生においてknow判決が優勢になった結果はRoediger et al.（2001）およびMeade & Roediger（2002）に一致する傾向であった。

共同想起における詳細情報の提示が虚再生に対するremember判決を抑制する結果から、共同想起において独自項目についての詳細情報が示されるときは独自項目の情報源に関する記憶を明確化することが示唆された。したがって、Lindsay & Johnson（1989）によるソースモニタリング説を今回の実験結果は支持されると考えられる。詳細条件では、独自項目の色、形、位置が共同想起において報告されることにより、独自項目の出現場面を個別再生テストで特化することが独自項目を提示されなかった実験参加者にとって容易になったのであろう。その場合、虚再生に対するknow判決には独自項目に関する詳細情報の共同想起場面で得たのであり、その項目を参加者自身が画像と一緒に見た、あるいは見なかったという印象が反映されていると考えられる。自分が見たという印象が有るのは、共同想起者がもたらした情報に対する同調を反映するのであろう。詳細条件では共同想起者がもたらす情報の豊富さから社会的同調が引き起こされやすくなっていた可能性を考えられる。一方、項目条件では、独自項目に関する記憶の情報源が参加者にとって不明瞭であり、独自項目の出現状況が画像の提示場面で誤帰属されやすかったためにremember判決が現れたのであろう。

項目条件ではremember判決を伴う虚記憶が、詳細条件ではknow判決を伴う虚記憶が、それぞれ出現しやすい状況であったため、今回の実験では項目条件と詳細条件における独自項目の虚再生数が同水準になった可能性がある。あるいは、項目条件と詳細条件では同一割合で独自項目に関する虚記憶が発生するのであるが、情報源の誤帰属によるremember判決の出現割合が条件によって変化すると推測することもできる。いずれにしろ、独自項目についての虚再生数に項目条件と詳細条件で差が見せなかったことから、虚再生に対するremember判決が詳細条件において出現しなかったことは、とにLindsay & Johnson（1989）によるソースモニタリング説によって矛盾せずに説明可能であると考えられる。

Suengas & Johnson（1988）は、出来事に関する記憶のリハーサルを繰り返した後に、記憶構造（知覚明瞭さ、空間的配置、思考と感情、感情の強さなど）がどのように変化するかについて、出来事を経験した条件と想像した条件で比較している。覚知的明瞭さについては、経験した出来事の記憶が想像した出来事の記憶よりも優れている傾向が見出された。また、知覚特性についてのリハーサルは、経験した出来事と想像した出来事についての記憶構造の違いを不明瞭にすることが示唆された。これらの結果は、今回の実験での共通想起における詳細情報の提示が虚記憶に対するremember判決の形成に効果的であったことを矛盾しないと考えられる。独自項目の色、形、位置に関する情報源は知覚的情報であり、実験参加者における影響が限定的であったため、イメージ膨張を引き起こさなかったのであろう。

Bousfield & Rosner（1970）は、単語リストを一度学習した後に、再生テストを繰り返すことがリスト外侵入語を増やすことなく、再生数を増加させることを示している。今回の実験における共通想起と個別再生は再生テストの繰り返しであるので、画像に関する記憶構成の向上が期待できるところである。このような状況において独自項目についての虚再生が生じる要因として、共通想起の特性について検討する必要がある(6)。共通想起の検討においても、虚記憶の繰り返しが正確な記憶を阻害し、虚記憶を促進する二面性を持つ点については、Roediger, McDermott, & Goff（1997）によるレビューに詳しく記述されている。

6) 記憶テストの繰り返しが正確な記憶を阻害し、虚記憶を促進する二面性を持つ点については、Roediger, McDermott, & Goff（1997）によるレビューに詳しく記述されている。
起の影響を検討している諸研究は、共同想起による記憶再生成数の個別再生数の重複のない総和よりも少ないと明らかにしている (Basden, Basden, Bryner, & Thomas, 1997; Meudell, Hitch, & Boyle, 1995; Weldon, 2000; Wright & Klumpp, 2004)。共同想起では、他の構成員による検索内容が個人の検索過程にとって有効な手がかりでないと（Anderson, Helstrup, & Rönberg, 2007）、これは効率的な検索方略を利用できないためである（Basden et al., 1997）。グループ全体の再生成数が個人別再生数の総和を上回らないと考えられている。共同想起場面が個人の検索過程に乱れを引き起こしやすい状況であるならば、共同想起において独自項目についての報告を聞くことは、独自項目が提示されていない実験参加者の検索過程に影響を及ぼし、後の個別再生において独自項目に関する情報源の混乱を引き起こすと考えられる。今回の実験では、独自項目が提示されない一致条件において独自項目についての虚再生が出現しなかったことから、独自項目の出現は共同想起での検索過程の混乱を引き起こす主たる要因であったことが推測できる。}


今回の実験結果および誤情報についての虚記憶に関する他の研究 (Frost, 2000; Meade & Roediger, 2002; Roediger et al., 2001) は、虚記憶に対するremember判断がknow判断と比較して少ないことを示している。Loftus, Donders, Hoffman, & Schooler (1989) は、再認記憶テストでの誤情報に対する反応時間と信頼度について検討した。実験では、一連の画像と画像に関する記述が実験参加者に提示された後の、画像に関する再認記憶テストが実施された。記述に含まれていた誤情報については再認記憶テストでの誤情報に対する判断の反応時間と信頼度が、記述に誤情報が含まれていた場合と、含まれていなかった場合とで比較された。誤情報に対する判断は、記述に誤情報が含まれていた場合に早くなり、高い信頼度を示すことが明確になった。この結果から、実験参加者が誤情報の虚記憶に対して know判断を割り当てたとしても、虚記憶に対して信頼が持たない状態とは限らないことが示唆されるであろう。

Frost (2000) は、誤情報に関する虚再生を異なる保持間隔において検証し、虚再生に対するremember判断と know判断の変化を比較している。画像提示後に実験参加者に示された記述には、画像の内容とは異なる誤情報が含まれていた。記述の提示から 10 分後、または 1周期後に、画像についての手がかり再生テストが実施された。保持間隔が 10 分であるか、もしくは誤情報が画像の内容と矛盾するものであるとき（たとえば、コカコーラか、サンキストか）、know判断はremember判断と比べて優勢であった。しかし、手がかり再生テストが 1周期後に実施された場合、画像に存在しなかったものに関する誤情報の虚再生では、remember判断がknow判断より多くなることが見出された。時間の経過とともに出来事の詳細についての記憶が失われ、誤情報の情報源が不明瞭になるため、虚記憶に対するremember判断が増加すると考えられる。Frost が指摘するように、時間の経過とともに記憶が不明瞭になるとremember判断に関する基準が緩くなる可能性がある。

Underwood & Pezdek はも、誤情報の情報源に関する信頼性的の高低が虚再認に及ぼす影響を検討している。彼らは、誤情報を提示してから 10 分後に再認記憶テストを実施する条件と、1周期後に実施する条件を比較した。子どもが作成したとは記述中に誤情報が含まれているために誤情報の情報源についての信頼性が低いものとされる条件では、10 分後の再認記憶テストで少なくなる平均虚再認数が1カ月後に上昇すること（0.54から1.33）が明らかになった。誤情報の情報源についての信頼性が高いとみなされる条件下では虚再認数の変化が小さかった（0.94から1.12）。

保持間隔の経過は、今回の実験でremember判断が見られなかった詳細条件における影響を及ぼすのであろう。今回の実験において誤情報として使用した独自
星野・山田：詳細な誤情報が虚記憶に及ぼす影響

自項目は、独自項目を見ていない実験参加者にとって画像に存在していなかった対象であった。Frost (2000)による実験、およびUnderwood & Pezdek (1998)による実験の結果を参考にすれば、保持間隔の増加とともに、独自項目に関する詳細情報の影響が弱まり、独自項目についての虚再生に対するremember判断は増加する可能性が考えられる。今回の実験では、誤情報が引き起こした虚記憶について詳細条件と項目条件で比較したが、さらに、保持間隔や誤情報の提示条件などによる影響を検討することで、虚記憶についての想起経験と検索過程との関係を明らかにすることが期待できるよう。

引用文献


（2007年2月7日受稿，2007年11月26日受理）
星野・山田：詳細な誤情報が虚記憶に及ぼす影響

付録A

Items included in the six scenes

<table>
<thead>
<tr>
<th>Scene</th>
<th>Critical item</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>勉強机 (desk)</td>
<td>ノート・パソコン (laptop computer)</td>
<td>ホッチキス, シャープペンシル, メモ帳, ベン (蛍光ペン), 鉛筆立て, マウス, マウスパッド, ノート (ルーズリーフ), 本, ファイル, 詞書, プリンター, プリンター台, カバン, 椅子 (stapler, automatic pencil, memorandum, pen, pencil case, mouse, mouse pad, notebook, book, file, dictionary, printer, rack, bag, chair)</td>
</tr>
<tr>
<td>風呂場 (bathroom)</td>
<td>なし (none)</td>
<td>バスタオル, タオル, 風呂用イス, 浴槽洗剤, 掃除用スポンジ, カミソリ, 石鹸, 石鹸置き, 洗顔料, シャンプー, リンス, 歯ブラシ, コップ, ドライヤー, 鏡 (bath towel, towel, bath chair, cleanser, sponge, razor, soap, soap dish, cleansing cream, shampoo, rinse, toothbrush, plastic glass, hair dryer, mirror)</td>
</tr>
<tr>
<td>玄関 (entrance)</td>
<td>靴 (shoes)</td>
<td>ほうき, 塵取り, 傘, 傘立て, 玄関マット, スリッパ, 額縁 (絵画), 花瓶 (花), 新聞紙, 電話機, 電話台, 電話帳, のれん, 靴ブラシ, 電灯 (broom, dustpan, umbrella, umbrella stand, mat, slippers, framed picture, flower vase, newspaper, telephone, rack, telephone directory, curtain, shoe brush, electric light)</td>
</tr>
<tr>
<td>シンク周り (kitchenette)</td>
<td>なし (none)</td>
<td>電子レンジ, アルミホイル, 食器洗い用スポンジ, グラス, 三角コーナー, まな板, 包丁, 筆立て, 食器用洗剤, ヤカン, 調味料, 玉じゅう, 下ろし金, 皿 (microwave oven, aluminum foil, sponge, glass, garbage can, chopping board, kitchen knife, chopsticks, chopstick stand, cleanser, kettle, seasoning, ladle, grater, dish)</td>
</tr>
<tr>
<td>押し入れ (closet)</td>
<td>布団 (bedding)</td>
<td>枕, シーツ, 掃除機, ジャケット, スポンジ, ダンボール箱, ヒーター, ゴミ袋, 衣装ケース, 縫いぐるみ, アイロン, 紙袋, 帽子, ポストンバッグ, ハンガー (pillow, sheet, vacuum cleaner, jacket, trousers, corrugated carton, fan heater, waste pouch, garment box, teddy bear, iron, paper bag, hat, bag, hanger)</td>
</tr>
<tr>
<td>冷蔵庫 (refrigerator)</td>
<td>なし (none)</td>
<td>アイス (カップ), 冷凍食品, 卵, ケチャップ, マヨネーズ, 牛乳, ベットボトル, タッパー, 器詰め, ハム, たまねぎ, マーガリン, 大根, レタス, トマト (ice cream, frozen food, egg, ketchup, mayonnaise, milk, plastic bottle, plastic container, bottled food, ham, onion, margarine, radish, lettuce, tomato)</td>
</tr>
</tbody>
</table>
### Presentation rate

<table>
<thead>
<tr>
<th></th>
<th>False recall</th>
<th>Remember</th>
<th>Know</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Item condition</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 s</td>
<td>.58 (.38)</td>
<td>.10 (.16)</td>
<td>.48 (.42)</td>
</tr>
<tr>
<td>30 s</td>
<td>.47 (.35)</td>
<td>.12 (.19)</td>
<td>.35 (.32)</td>
</tr>
<tr>
<td><strong>Detail condition</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 s</td>
<td>.61 (.32)</td>
<td>0</td>
<td>.61 (.32)</td>
</tr>
<tr>
<td>30 s</td>
<td>.43 (.50)</td>
<td>0</td>
<td>.43 (.50)</td>
</tr>
</tbody>
</table>

Note. Values enclosed in parentheses represent SDs.

表に示した虚再生率は、独自項目を提示された実験参加者が共同想起において独自項目を再生した場合に、その参加者との対になってきた参加者が個別再生において独自項目を虚再生した割合の条件別平均值である。虚再生率とKnow 判断率について、2 (共同想起) × 2 (提示時間) の分散分析を行った。その結果、有意な主効果および交互作用は示されなかった。項目条件におけるremember 判断率は、0 よりも有意に大きな値であり \((t(19)=2.79, p = .012, SE = .039)\)。提示時間が 15 s と 30 s の条件間には有意差がなかった。