Electrochemical Measurement of the Concentration Depth-profile of Cr near the Surface of Fe-Cr Alloys

Tetsutaro Ogushi*

*Technical Research & Development Laboratories, Nippon Kinzoku Co., LTD.

This work is concerned with the electrochemical measurement of the concentration depth-profile of Cr near the surface of Fe-Cr alloys. In Fe-Cr alloys, the steady current density ($I_{t,p}$: mA/cm2) in the transpassive region increases with Cr concentration, suggesting that Cr concentration can be evaluated from the measurement of $I_{t,p}$. When $I_{t,p}-Q$ (Coulomb/cm2) curves of Cr-depleted Fe-Cr alloys are measured at $+1.400$ V vs S.C.E. (transpassive region) in 1 mol·dm$^{-3}$ H$_2$SO$_4$ (25°C, air open), $I_{t,p}$ increases gradually according to the dissolution in the transpassive region, and finally reaches a constant value depending on Cr concentration of matrix. From this $I_{t,p}-Q$ curve, the concentration depth-profile of Cr can be obtained by converting $I_{t,p}$ into Cr concentration and Q into depth.

I. Introduction
The concentration depth-profile of Cr near the surface of Fe-Cr alloys plays a very important role in the corrosion and oxidation resistance. In order to produce high quality Fe-Cr alloys, speedy and exact measurement of the concentration depth-profile of Cr must be made and the production process must be properly controlled.

Only qualitative measurement of the degree of Cr-depletion can be made using the Ferric Chloride Spot Test1 and more quantitative information needs to be obtained.

The present work is concerned with a new method for measurement of the concentration depth-profile of Cr near the surface of Fe-Cr alloys. This method is based on electrochemistry and gives some fairly quantitative information.

2. Principle
The steady current density ($I_{t,p}$: mA/cm2) of Fe-Cr alloys in 1 mol·dm$^{-3}$ H$_2$SO$_4$ (25°C, air open) at $+1.400$ V vs S.C.E. (transpassive region) increases with Cr concentration (Fig. 12).

The test specimen is immersed in 1 mol·dm$^{-3}$ H$_2$SO$_4$ and then the electrode potential is fixed at $+1.400$ V vs S.C.E. and the $I_{t,p}-Q$ (Coulomb/cm2) curve is measured. If a Cr-depleted zone is present, $I_{t,p}$ increases gradually according to the dissolution in the transpassive region, and finally becomes a constant value depending on Cr concentration of matrix. In this $I_{t,p}-Q$ curve, $I_{t,p}$ is converted into Cr concentration by Fig. 1 and Q into depth by equation (1) if the current efficiency of dissolved metallic ions is about 100%.

$$D=10^4\left(\frac{dQ}{dQ}\right)\left[0.0000898 \left(\eta_{H^+} \right)^{+} + 0.000193 \left(\eta_{Fe^{+++}} \right)^{+}\right]$$

(1)
3. Experimental and Result

Commercial cold-rolled SUS 430 (thickness 0.5 mm) and three standard Fe-Cr alloys with different Cr concentration (Fe-9% Cr, Fe-13% Cr, Fe-17% Cr) were studied in this work. The chemical composition of these alloys is shown in Table 1.

Cr-depletion treatment of SUS 430 specimens was carried out by heating them in an air-opened siliconite furnace (790°C, 60 sec), and after cooling them in air, removing the oxide film by anodic polarization in 5 wt% HNO₃ (+1.600V vs S.C.E., 70 sec). After this treatment, SUS 430 specimens were immersed in 1mol dm⁻³ H₂SO₄ (60°C) for various time length (0 sec, 30 sec, 60 sec and 180 sec) in order to remove the Cr-depleted surface layer, and then the ıₜₚ-Q curves were measured in 1mol dm⁻³ (25°C, air open) by polarizing the specimen at +1.400V vs S.C.E. (transpassive region). Fig. 2 shows that ıₜₚ increases with immersion time and Q, representing the profile of Cr concentration near the surface of Cr-depleted SUS 430.

The ratio of Cr/(Fe+Cr) dissolved in 1mol·dm⁻³ H₂SO₄ (60°C) for various time length (0 sec, 30 sec, 60 sec and 180 sec) in order to remove the Cr-depleted surface layer, and then the ıₜₚ-Q curves were measured in 1mol·dm⁻³ (25°C, air open) by polarizing the specimen at +1.400V vs S.C.E. (transpassive region). Fig. 2 shows that ıₜₚ increases with immersion time and Q, representing the profile of Cr concentration near the surface of Cr-depleted SUS 430.

The ratio of Cr/(Fe+Cr) dissolved in 1mol·dm⁻³ H₂SO₄ versus Q was measured by chemical analysis and the results are summarized in Table 2. Cr⁶⁺ ions were analyzed by diphenylcarbazide method and Fe³⁺ ions by O-phenanthroline method. Table 2 shows the gradual increase of the ratio of Cr/(Fe+Cr) from 14.59% to 16.01% with increasing amount of Q. Within experimental errors, this result agrees with the variation of Cr concentration in the surface layer of Cr-depleted SUS 430. In table 2, the amount of charge (Q) measured by chemical analysis is almost equal to...
the amount of \(Q \), showing that the generation of
\(\text{O}_2 \) does not occur and the current efficiency of
dissolved metallic ions is about 100\%, hence \(Q \)
can be converted into \(D \) (depth) by equation (1).
In Fe–12\% Cr alloys
\[
D \equiv (10^4)(1/7.7)Q \left[(0.0000898)(0.12 \times 6)/(0.12 \times 6 + 0.88 \times 3) + (0.000193)(0.88 \times 3)/(0.12 \times 6 + 0.88 \times 3) \right] ^{0.22 Q} \ldots (2)
\]
and in Fe–17\% Cr alloys
\[
D \equiv (10^4)(1/7.7)Q \left[(0.0000898)(0.17 \times 6)/(0.17 \times 6 + 0.83 \times 3) + (0.000193)(0.83 \times 3)/(0.17 \times 6 + 0.83 \times 3) \right] ^{0.21 Q} \ldots (3)
\]
From equation (2) and (3), equation (4) is obtained
for Fe–(12~17\%) Cr alloys.
\[
D \equiv 0.22Q \ldots (4)
\]
The concentration depth-profile of Cr (Fig. 3),
therefore, is obtained by converting \(I_{\text{t,p}} \) into Cr
concentration by Fig. 1 and \(Q \) into \(D \) (depth) by
equation (4).

4. Summary
If Cr-depleted zone is present in Fe–Cr alloys,
the current density \((I_{\text{t,p}}: \text{mA/cm}^2) \) measured in
1 mol·dm\(^{-3}\) \(\text{H}_2\text{SO}_4 \) (25\°C, air open) at +1.400 V
vs S.C.E. (transpassive region) increases gradually
according to the dissolution in the transpassive
region.

From this \(I_{\text{t,p}}-Q \) (Coulomb/cm\(^2\)) curves, the
concentration depth-profile of Cr is obtained
by converting \(I_{\text{t,p}} \) into Cr concentration and \(Q \)
into \(D \) (depth).

Acknowledgment
The author is grateful to Dr. Tatsuhiko Noda
for his advice on the preparation of this note.
(Received September 28, 1982)

References
1) R. V. Trax & J. C. Holzwarth: Corrosion,
16, 271t (1960).
2) R. Oliver: Comite' International de Termo-
dynamique et de Cinetique Electrochimiques