自動回折計の普及にともない、構造解析が比較的容易に行えるようになった。写真法に伴うcounter dataの使用によって精度の向上が期待されたが、必ずしもそうとは言えない面もあるようである。構造解析の多くは、結晶学上の目的からではなく、他の分野の要求から行なわれる。特に精密な解析は難しく、この種の解析は従来のConventional Structure Analysisと呼ぶものとすれば、これらの仕事の精度を、その目的とする範囲においてもできるだけ高めることが必要であることである。あるいは少なくとも説明的な解析結果を批判的に善悪して行くだけでも、その解析の精度を正しく評価していくことが必要であろう。

counter dataを用いて解析するには、全物質の数が、標準偏差（counting statisticsによるもの）から2倍あるいは3倍より小さい反射を除くことがある。こうした弱い反射の測定精度が低く、また構造に関する情報量が少ないところから、この観点に妥当なうえがある。しかしながら、2個あるいは3個で切り捨てられる反射、すなわち空間における全物質の数も均一とされないから、除かれる反射の数が多くなると、系統的な偏りを解析結果に与えるおそれがある。このような観点から、二、三の結晶について、全dataの合計を行ない、dataを切る検討の基準を変えたときの解析結果の比較検討を行なった。

次に一例を示す。CsHf3P2Pdの三斜晶系、P1、a = 40.474, b = 10.204, c = 18.341, α = 108.46, β = 95.46, γ = 118.80°, Z = 2。MoKα線を用い、β-フィルター法で測定した反射4304.0λとsinθ/λ＝標準偏差より合計したもの在次に掲げる。全反射を用いた最小自乗法による精密化では、R = 0.0564となり、このときF0に対する反射を除く4096反射に対するR = 0.0512である。かさか大で3640反射による精密化では、R = 0.0423となり、パラメータによってはもと超えるshiftを示した。

<table>
<thead>
<tr>
<th>λ</th>
<th>0.311</th>
<th>0.391</th>
<th>0.448</th>
<th>0.493</th>
<th>0.532</th>
<th>0.551</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>15</td>
<td>27</td>
<td>37</td>
<td>45</td>
<td>53</td>
<td>31</td>
</tr>
<tr>
<td>1≤λ≤3</td>
<td>96</td>
<td>83</td>
<td>59</td>
<td>47</td>
<td>52</td>
<td>46</td>
</tr>
<tr>
<td>λ > 3</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Sum 829 761 824 742 781 367

-28-