動力学的反射曲線を用いた圧電率の測定

東京商大

結晶の各微小な格子変数の相対的変化及び各角をX線を用いて測定する方法は、
1) エクリメートされたビームを用いる、検体の差分、2) 地球儀のスペクトロメーター法、
3) 全体差を3ヶ以上配置した方法による法等がある。我々はこの方法を用いて試電体の圧電率を測定し、この方法の精度等について考察した。さらにロックキングカーブの移動をポジする方法として、カーブの傾斜を利用した。

一般に完全結晶のロックキングカーブは、高角度側に鈍い傾斜を持ち、その傾斜で試料の角度変化に対して強度変化が極めて大きい。高角度はこのような性質と逆に利用して、半透明から透明化などを正確に求める。また、強度は試料の結晶度、結晶の構造等によって急激に変化する。さらに試料の入射角度、感度の分散が含まれたので固定ロックキングカーブが得られない。試料の温度変化も重大な障害となるが、この方法では即時に強度変化が得られるので比較的楽である。

水品の圧電率C11, C14をお調べ。実験方法は、以下述べて同じであるが、S3, 4, 2, 2の
非対称反射を用い、対称結晶とし、測定は(7, 9, 7),
(7, 9, 7)配置にした。各角度に変化とし、変形とを
分離した。C11は420, 220, 440, 220反射等を用い、平均
値として6.67 x 10^8 (95±5%)を得てこの方法がか
なり信頼できることが確かめられた。C14は420反射を用
い、ずれの角で測定しておむねが、-2.7 x 10^8 で大きさ
相当である。図の水品の420反射で、C11を用いて
印加して除いた。KD Pでは200, 400反射による
ずれの角と220反射等による角度変化を測定して
C11を求めて、前者は2.8 10^8 で、他の方は
より小なかった。後者による値も若干小さいと
原因について考察した。