結晶化ガラスの構造と性質

田 代 仁

1. は し が き

ふつうのガラスは成形したものを室温から加熱すると軟化変形するが、特殊な組成のガラスはその軟化温度以下から結晶に変化し始め、そのために軟化することなく進むのはその殆んどが 0.1 乃至 1μ 程度の微結晶の凝集体に変化する。これが結晶化ガラス (Crystallized glass), ガラス・セラミックス (Glass-Ceramics), デビトロセラミックス (Devitroceramics) などと呼ばれるものである。

変形なく微細な結晶の集合体に変化させることは、ガラスの基礎成分としてそのような性質を与える成分、たとえば後述のようにアルカリ成分として Li2O などを選ぶこと、および結晶化を促進させる金、銀、白金などの結晶核の添加、またはガラスの二相分離を促進させる成分、たとえば TiO2, P2O5 などの添加が必要である。

* 京都大学化学研究所
現在実用化されている結晶化ガラスの結晶化機構はかなり複雑で、たとえば耐熱食器に使用されている低膨張性結晶化ガラスは第1図に示す過程を経て結晶化が行なわれる。

組成は 65 SiO₂、30 Al₂O₃、5 Li₂O、1 K₂O、3 P₂O₅、4 ZrO₂（重量比）に近いものです。この組成のガラスを 1550°C で溶融し、これを成形冷却するとふつうのガラスと同様な透明なガラスができる。これを室温から再び徐々に加熱し、740°C でやや長時間保つと、まず組成の異なる二種のガラス相に分離し（第1図参照）。一相は粒状となる、両相がガラス相であることはX線回析分析で確認できる。さらに温度を 840°C に上げると、径が 0.05〜0.1 μ のペータ・エーキリブレート結晶粒子が多数均一に析出し、重量で約 45% を占めるに至る。さらに温度を上げると 1150°C までに、エーキリブレートの結晶相と周囲の残存ガラス相が反応し、径が 1 μ 程度のペータ・スポンジメント結晶粒子が析出し、全体の約 95% 以上（重量）を占めるに至る。等 1 図の写真はいずれも試料の破断面で、右側は破断したままの面、左側は破断後溶融で浸した面、いずれもレプリカ法で撮影したものである。二相分離は断面のままの面、結晶析出は溶融処理の方法が観察しやすい、1100°C および 1150°C で加熱し、断面を溶融処理した試料に見える網目は結晶粒子または粒界にあるガラス相が浸食された跡である。

ガラスの二相分離から次のエーキリブレートの結晶の析出の過程、および結晶の速やかな析出しに二相分離がどのように役立つかの理由はまだ明らかでない。二相ガラスの境界が次の結晶核の発生の源になるとの推察もあるが、電子顕微鏡による詳細な数多くの観察結果によれば結晶の発生は二相のガラスの境界ではなく、どちらかの相のガラスの内部に一样に発生する場合が多いことが確かめられている。これより二相分離によって、一方の相のガラスが相分離の前より析出結晶の組成に近いガラスとなり、その結果結晶の析出が促進されると考えるもの（3）が多い。二相分離が結晶の析出促進のほかに、結晶の微細化にどのように役立つか、すなわち二相分離と析出結晶の大きさの関係はもう明らかでない。二相ガラスの一方の相に結晶核形成剤として添加した TiO₂ および ZrO₂ が他相より余計に偏在し、それが多数の結晶核となり、微細な結晶粒子をまず一相のガラスに多数発生させると考えられる。

2. 結晶化ガラスの基礎組成

ふつうのガラスは溶融を容易にするための成分として Na₂O または K₂O を含有するが、結晶化ガラスにはアルカリ成分として Li₂O を含有するものが多い。ガラス中に Li₂O が含まれる場合には、再加熱の際にガラスの二相分離が起こりにくい、その結果破壊変形が起こりにくい、このような性質を示す最も簡単なガラスはリチア・珪酸二成分系ガラス、特に Li₂O・3 SiO₂ の組成をもつガラスである。このガラスが分相を起こしやすいのは、Li₂O が他のアルカリより SiO₂ と混和し難しい（incompatible）性質をもつためと説明されている。すなわち Li⁺ イオンは一個であるがイオン半径が小さいためにその電荷が強く、ガラス中でべく数多くの分極し易い（polarizable）非架橋酸素（non-bridging oxygen）によって閉まれ、エネルギー的に安定な状態に近づくこととする。非架橋酸素は Li⁺ イオンに接してガラス中に存在するので、Li⁺ イオンがべく数多くの非架橋酸素に閉まれるためには Li⁺ イオン同志がべく近くに存在し互いの非架橋酸素を利用するのが良い。すなわちガラス中に Li₂O の含有量の多い別の相ができると良い。この相はガラス相でも、結晶相でも良く、前者の場合はガラスの二相分離（一相は Li₂O の多い相）、後者の場合は Li₂O が均一に分布してい
の多い結晶の析出が起こることになる。

MgO および ZnO も、その陽イオンが強い静電力をもつため、ガラス中で SiO₂ と incompatible である。それ故これらの二価化合物も結晶化ガラスの重要な成分としてしばしば使われる。

Li₂-SiO₂ 二成分系ガラスに更に第三成分を加えて加工性その他の性質の良い結晶化ガラスをつくる場合、その第三成分がガラスの結晶化傾向を防げば、困難。1 表および 2 図は Li₂O・3SiO₂ ガラスに種々の第三成分がどれだけ添加できるかを調べた結果(*) を示すものである。図または表に示す最大添加量 (mole) 以上に添加する場合には加熱の際にガラスの結晶化傾向が減し、軟化変形が起こる。興味のあることは、アルカリガラスおよびアルカリ土類酸化物について、その陽イオンの静電場が弱いほど、能里の量が少ない添加できないことである。これは次のように説明できる。

すなわち静電場の弱いアルカリまたはアルカリ土類イオンは分極し易い非架橋酸素を保ってガラス中に導入されるので、それらによって Li⁺ イオンは間まった安定な状態となり、したがって Li₂O が互いに集まる必要はなくなる。すなわち二相分離または結晶の析出は起こり難くなる。とえば BaO⁺ イオンは MgO⁺ イオンよりイオン半径が大きいので、その静電場は弱く、したがって BaO の O⁻ イオンは MgO のそれより分極しやすい。同様に K₂O の O⁻ イオンは Na₂O のそれより分極しやすい。その結果 BaO は MgO より、また K₂O は Na₂O より、添加によって Li₂O・3SiO₂ ガラスの結晶化を防げる傾向が強い。

第 2 図で静電場の弱いアルカリまたはアルカリイオンほど第三成分として小量しか添加できない事実は以上より説明できる。

ガラスの網目構成酸化物 (glass network former), たとえば SiO₂, Al₂O₃, P₂O₅, As₂O₃ など、および中間酸化物(glass intermediate), たとえば BeO, PbO, CdO, ZrO₂, CeO₂, La₃O₅ など, その添加限界量を示す。

表 1 Li₂O・3SiO₂ ガラスに対する第三成分の添加限界量

<table>
<thead>
<tr>
<th>添加物</th>
<th>限界添加量 (mole)</th>
<th>添加物</th>
<th>限界添加量 (mole)</th>
<th>添加物</th>
<th>限界添加量 (mole)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na₂O</td>
<td>4.5</td>
<td>B₂O₅</td>
<td>3</td>
<td>P₂O₅</td>
<td>2</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.75</td>
<td>Al₂O₃</td>
<td>1.5</td>
<td>As₂O₃</td>
<td>2</td>
</tr>
<tr>
<td>Rb₂O</td>
<td>0.19</td>
<td>La₂O₃</td>
<td>1.5</td>
<td>Sb₂O₅</td>
<td>0.75</td>
</tr>
<tr>
<td>BeO</td>
<td>1.1</td>
<td>CeO₂</td>
<td>0.75</td>
<td>V₂O₅</td>
<td>>18</td>
</tr>
<tr>
<td>MgO</td>
<td>13.5</td>
<td>SnO₂</td>
<td>3</td>
<td>CrO₃</td>
<td>>9</td>
</tr>
<tr>
<td>CaO</td>
<td>6</td>
<td>PbO₂</td>
<td>1.5</td>
<td>MoO₃</td>
<td>>9</td>
</tr>
<tr>
<td>SrO</td>
<td>4.5</td>
<td>TiO₂</td>
<td>6</td>
<td>WO₃</td>
<td>2</td>
</tr>
<tr>
<td>BaO</td>
<td>3</td>
<td>ZrO₂</td>
<td>0.75</td>
<td>MnO₂</td>
<td>7.5</td>
</tr>
<tr>
<td>ZnO</td>
<td>12</td>
<td>Fe₂O₃</td>
<td>6</td>
<td>CoO</td>
<td>9</td>
</tr>
<tr>
<td>CdO</td>
<td>1.5</td>
<td>NiO</td>
<td>4.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(*) 記載量より大きい場合は透明ガラスが得られない。

図 2 Li₂O・3SiO₂ ガラスに対する第三成分の添加限界量

8.3-27
結晶化ガラスの構造と性質

O₃ などは、上記のガラス修飾酸化物（glass network modifier）にくらべて、リチヤ・珪酸ガラスに対する最大添加量は小さい（第1表）。すなわち少量添加してもガラスの結晶化を著しく防げる。ただし TiO₂，MnO₂，V₂O₅，Fe₂O₃，CoO，NiO などの遷移金属元素は例外で、これらは後述するように核形成剤または二相分離促進剤として働くために、通常ガラスの結晶化を促進する。ガラスの網目構成酸化物および中間酸化物が何故ガラスの結晶化を防ぐのかはまだ十分解明されていないが、一般にこれらの酸化物はガラスの網目構造をブロックする働きがあるためである。たとえば Al₂O₃ をリチヤ・珪酸ガラスに添加すると、Al³⁺ イオンは Li⁺ イオンに接する非架橋酸素を取り入れて酸素四配位の状態に変化しガラス構造を補強する。

このように Al₂O₃ はガラスの微細結晶化に好ましい成分ではないが、実際にはかなり多く結晶化ガラスの成分として添加される場合が多い。その理由は、ガラスができる範囲を拡げ、ガラスの成形性を良くし、さらに熱膨張係数の小さい結晶、たとえばユーロリプサイト（Li₂O・Al₂O₃・2SiO₂）、スポジエン（Li₂O・Al₂O₃・4SiO₂）などの結晶をガラス中に析出させて製品の耐熱衝撃性を高めるからである。Al₂O₃ を多量添加する場合には有効な結晶化促進剤、たとえば TiO₂，ZrO₂ などを共に加える必要がある。

3. 結晶化促進剤

結晶化ガラスの製造方法を始めに発明した米国のノーランド・ストーキー（1939）は TiO₂ を含有するガラスを使用した。当時は、ガラス中に溶解した TiO₂ は、再加熱によって始めて微細なネット結晶として析出し、これが結晶核となり、他の珪酸塩結晶がその表面に析出すると考えられていた。そのような機構で結晶化が起こるガラスもあるが、現在の実用製品の結晶化過程は、第17図のように複雑で、結晶化に先立ってガラスの二相分離が起こる。TiO₂ の添加が二相分離の促進に効果のあることは実験的に確かめられており、その理由は Ti³⁺ イオンに接する O²⁻ イオンが Si⁴⁺ イオンのそれより分極性に富み、したがって二相境界に集まって界面張力を下げるためとの説明（1998）もあるが、なお明らかでない。TiO₂ 以外に ZrO₂，P₂O₅ などの添加ガラスの二相分離に効果があり、我が国で製造されている結晶化ガラスには主にこれらが結晶化促進剤として使用されている。

特殊な用途をもつ結晶化ガラス、たとえば感光性結晶化ガラスには結晶化促進剤として銅，金，銀が用いられる（1939）。これらはガラス中にイオンとして溶解しているが、紫外線照射と加熱によって金属コロイドに還元され、これが結晶核として働く。この場合には二相分離が起こらず直接これらの核の表面に珪酸塩結晶が析出する。

4. 結晶化ガラスの種類

従来報告された結晶化ガラスをその基礎組成から大別すると、第2表に示すように4種となる。A型は Li₂O，Al₂O₃ および SiO₂ を主成分とするもので、この中でも Li₂O が多く，Al₂O₃ の少ないものは膨張係数は大きいが，4000kg/cm² に近い曲げ強度を示し，また Li₂O が少く，Al₂O₃ の多いものは強度は 1500kg/cm² で耐熱衝撃性に優れる。前者の析出結晶は Li₂O・2SiO₂ 結晶，後者のそれは Li₂O・Al₂O₃・2SiO₂ または Li₂O・Al₂O₃・4SiO₂ 結晶，またはその SiO₂ との固溶体である。加熱によるこれらの結晶の析出過程はすでに第1図の写真で示した。第3表に高リチヤ，低アルミナ系の結晶化ガラスの組成例（1998），および性質を示す。低リチア，高アルミナ系の結晶化ガラスの組

8.3-28
第1図 低膨張性結晶化ガラスの熱処理による構造変化
結晶化ガラスの構造と性質

紫外線照射時間 0 分

紫外線照射時間 2 分

紫外線照射時間 30 分

紫外線照射時間 180 分

ガラス組成：SiO₂ 81, Li₂O 12.5, K₂O 2.5, Al₂O₃ 4, CeO₂ 0.02, Au 0.027（重量％）

加熱処理：900℃において60分間

結晶相：Li₂O·2SiO₂結晶

第3図 感光性乳白結晶化ガラスの紫外線照射時間と結晶の大きさの関係
第2表 基礎組成による結晶化ガラスの分類

<table>
<thead>
<tr>
<th>A型</th>
<th>Li₂O 含有結晶化ガラス</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li₂O-SiO₂</td>
<td></td>
</tr>
<tr>
<td>Li₂O(多量)-Al₂O₃(少量)-SiO₂</td>
<td></td>
</tr>
<tr>
<td>Li₂O-RO(R: Mg, Zn)-Al₂O₃-SiO₂</td>
<td></td>
</tr>
<tr>
<td>Li₂O(少量)-Al₂O₃(多量)-SiO₂</td>
<td></td>
</tr>
</tbody>
</table>

B型 | Na₂O 含有結晶化ガラス |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Na₂O-Al₂O₃-SiO₂</td>
<td></td>
</tr>
<tr>
<td>[K₂O-SiO₂-(TiO₂, Nb₂O₃, Ta₂O₅)]</td>
<td></td>
</tr>
</tbody>
</table>

C型 | 無アルカリ結晶化ガラス |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RO(R: Mg, Ba)-Al₂O₃-SiO₂</td>
<td></td>
</tr>
<tr>
<td>RO(R: Pb, Zn)-B₂O₃-SiO₂</td>
<td></td>
</tr>
</tbody>
</table>

D型 | 特種結晶化ガラス |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(BaO, PbO)-TiO₂-Al₂O₃-SiO₂</td>
<td></td>
</tr>
<tr>
<td>(PbO, Na₂O)-Nb₂O₅-Al₂O₃-SiO₂</td>
<td></td>
</tr>
</tbody>
</table>

第3表 Li₂O(多量)-Al₂O₃(少量)-SiO₂ 系結晶化ガラス

<table>
<thead>
<tr>
<th>実例 a</th>
<th>実例 b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li₂O</td>
<td>12.5</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>4.0</td>
</tr>
<tr>
<td>SiO₂</td>
<td>81.0</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>2.0</td>
</tr>
<tr>
<td>K₂O</td>
<td>2.5</td>
</tr>
<tr>
<td>合計（重量）</td>
<td>102.0</td>
</tr>
<tr>
<td>加熱処理温度（℃）</td>
<td>800</td>
</tr>
<tr>
<td>熱膨張係数</td>
<td>110×10⁻⁷</td>
</tr>
<tr>
<td>曲げ強度（kg/cm²）</td>
<td>3400</td>
</tr>
<tr>
<td>軟化温度（℃）</td>
<td>900</td>
</tr>
</tbody>
</table>

現在の低リチャ、高アルミナ系結晶化ガラスの欠点は、そのガラスの粘度が高く、溶融に 1500℃ 以上の高温加熱を必要とする点である。リチャ、アルミナの含有量を増やすと粘度を下げることができるが、一方それによってガラスの液相温度が上がり、ガラス溶融タンク内の一部、特にフィーダー部分でガラスが結晶化し、ガラスの粘度が行なえなくなる。高温粘度と液相温度が、共に低いガラス組成の選択が残された問題である。なおこのほかに機械的強度（曲げ強度）を現在の1500 kg/cm²（曲げ強度）から 5000 乃至 10000 kg/cm² に上げることも、低膨張性結晶化ガラスの用途拡大に重要である。

第2表のB型は A型の Li₂O を Na₂O に置換したもので、価値、高強度を目的として作られ、耐熱衝撃性を必要としない食器、たとえば皿、茶碗などに使われている (14)。表面に圧縮歪の生成する釉薬を施したこの種の結晶化ガラスの食器には目的の高さから落して破壊しないものがある。主な析出結晶はネフェライトである。前述のように Na₂O は Li₂O にくらべてガラスの微細結晶化に効果の少ない成分であるから、結晶化を促進するために MgO, TiO₂, ZrO₂ などを共に添加した組成が一般に用いられている。

アルカリとして K₂O を含む結晶化ガラスもあるが (15)、この場合には特に結晶化を促進する効果のある TiO₂, Nb₂O₃, Ta₂O₅ などが必須成分として添加されている。
C型はアルカリの代わりにMgOなどのアルカリ土類を含むもので、電気抵抗が高く、誘電損失が小さく、また機械的強度が高いために電気絶縁材料として使われている。二価の陽イオンとしてPb²⁺、Zn²⁺イオンの酸化物を含む珪酸結晶化ガラスはガラスとガラスまたは、ガラスと金属の接着剤として使われる。ふつうの低溶融ガラスと異なり、融着後は結晶化が起こるので、融着部の耐熱性が向上し、また機械的強度も向上する利点がある。

以上の型の結晶化ガラスの主な構成は珪酸塩であるが、SiO₂を含む結晶からなる結晶化ガラスもある。第2表のD型がこれで、析出結晶はBaTiO₃(13)、PbTiO₃(14)、Pb,Nb₂O₅(15)またはNaNbO₃などである。強誘電体材料として使われる。焼結による製品と異なり、ガラス状態における成長が容易なために強誘電性薄膜の製造に適する。

5. 微細構造と性質

5.1 機械的強度

結晶化ガラスはふつうの陶磁器より強度（曲げ強度）が2乃至8倍大きい、その主な理由は構成結晶の大きさが著しく小さい（0.1～1μ）ためと考えられている。著者などは実験に有触の結晶化ガラスについて、曲げ強度と構成結晶の直径の関係を調査した。

結晶化ガラスの強度には、結晶粒子の大きさの他に、(a)結晶および結晶粒間隙にあるガラス相の有無の強度、(b)結晶とガラス相の境界強度、(c)結晶とガラス相の接触強度、(d)相接する結晶粒子の大きさの影響を知るには、他の因子が同じで、結晶粒子の大きさのみ変化した種々の試料を作ることが必要で、それには感光性結晶化ガラスを用いると便利である。

SiO₂81、Li₂O12.5、K₂O2.5、Al₂O₃4、CeO₂0.03、Au0.027％（重量）の組成の感光性ガラスを再加熱の前に紫外線で照射するとCe⁺⁺イオンの電子がAu⁺イオンの近くに捕えられ、次の再加熱によって金原子が生成、これが集約して金細管状になる。紫外線照射時間の増大によって、金細管粒子の数、したがってこれを核として生成する珪酸リチャ結晶粒子の数および大きさを調節することができる。金細管が生成温度は510℃、これを核として始めに620℃からLi₂O・SiO₂結晶が析出し、900℃までに全体の約45％（重量）を占める。900℃からこの結晶と残存ガラス相が反応し、Li₂O・2SiO₂結晶が析出。全体の90％以上を占める。第3図は、上記組成のガラスを種々の時間照射後、毎分5℃の速度で温度を上げ、510℃および620℃で30分、最後に900℃で60分保持したものをについての電子顕微鏡写真である。ただし写真は試料の断面を研磨後、0.1％硫酸で腐食し、これを二段レプリカ法で撮影したものである。析出結晶粒子（Li₂O・2SiO₂）の長軸方向の長さ（100個の粒子についての平均値）と曲げ強度（二点支持、中央荷重法により測定）を第4図に示す。

結晶化ガラスの破壊は、電子顕微鏡観察によれば、結晶の伸び面および結晶とガラス相の境界面に沿って起こり、始めに結晶の伸び面または結晶とガラス相の境界面に亀
裂が発生し、次にこの亀裂の先端に歪力が集中し、その結果亀裂は隣の結晶粒子の内部または結晶とガラス相の境界に延びて遂に全体が破壊すると考えられる。クリフライスの破壊理論によれば、物質の強度σと始めに存在する“キズ”の大きさdの間には次式が成立する(11)。この場合“キズ”は最初に生成する亀裂に相当し、その大きさは結晶粒の大きさに大体等しいと考えられる。

\[\sigma = \text{定数} \cdot d^{-1/2} \]

第4図の丸印は測定値で、大体上式が成立することがわかる。すでにKnudsen(19)は炭化ケイ素、トリオンなどの粉末焼結物について上式が成立することを実験的に確かめているが、それらの結晶粒子の径は10〜1000μの範囲にあり、5μ以下の径をもつ結晶粒子の凝集体については確かめられていない。結晶粒子以外の粒子が結晶化ガラスの強度におよぼす影響についてはまだ定量的な研究はなれていないが、結晶粒子とその間隔のガラス相の熱膨張係数の差が強度に大きな影響を与えることを示唆するデータが多い。たとえば第4表は種々の結晶化ガラスの曲げ強度とその主な構成粒子の熱膨張係数を示すものであるが、後者は主な構成粒子の熱膨張係数の差が小さい。一般に結晶粒子径に近いガラス相は、種々の不純物またはガラスの加工性を良くするための微量添加物、特にアルカリを多量含み、したがって大きな膨張係数をもつのが普通である。したがって析出結晶粒子の膨張係数が小さい場合には強度の小さいガラス相の方に引張り亀裂が発生し、これが強度低下の原因となると考えられる。この場合結晶粒子径αに比例し、また強度σはこの場合に逆比例するので、

\[\sigma = \text{定数} \cdot \alpha^{-1} \]

の関係が成立する(11)。第4図の結果が(2)式でなく(1)式で表わされるのは、実際に使用した結晶化ガラスが熱膨張係数の大きいLi₂O・2SiO₂を含み、したがってガラス相との熱膨張係数の差が小さく、歪の生成の影響が無視できるためである。スポジメンまたはユーバリプタイトを構成結晶粒子として含む低膨張性結晶化ガラスでは結晶粒子とガラス相の熱膨張の差による影響が強く現われ、(2)式が成立する可能性がある。

第4表 結晶化ガラスの強度比較

<table>
<thead>
<tr>
<th>主な結晶相</th>
<th>曲げ強度 (kg/cm²)</th>
<th>結晶相の熱膨張係数</th>
</tr>
</thead>
<tbody>
<tr>
<td>リチウム・二水酸化物</td>
<td>3000</td>
<td>110×10⁻⁷(20〜600℃)</td>
</tr>
<tr>
<td>コーサライト</td>
<td>1600</td>
<td>28×10⁻⁷(25〜700℃)</td>
</tr>
<tr>
<td>β-スポジメン</td>
<td>1400</td>
<td>9×10⁻⁷(20〜1000℃)</td>
</tr>
<tr>
<td>β-ユーバリプタイト</td>
<td>1100</td>
<td>-86×10⁻⁷(20〜700℃)</td>
</tr>
</tbody>
</table>

5.2 陽極電気損失

ふつうの陶磁器の陽極電気損失（tanδ）は、(a)結晶の種類、(b)結晶粒の大きさ、(c)結晶粒間隔のガラスマトリックスの化学組成、(d)空孔などによって決まる(13)。結晶化ガラスについてはこれらの因子の影響を調べた結果は次の通りである(12)。最も強い影響をもつのは(a)である。たとえばtanδの大きいペータ・ユーバリプタイト結晶（単体焼結物のtanδは600×10⁻⁷(1Mc)）が析出した結晶化物はtanδの小さいペータ・スポジメン結晶（単体焼結物のtanδは60×10⁻⁷(1Mc)）が析出した結晶化物より電気損失の大きなtanδをもつ。第5図はこれを示す実験結果で、Li₂O含有量の異なるLi₂O X, MgO 15, Al₂O₃ 23, SiO₂ 62（X : 4, 6, 8, 12）（重量比）を種々の温度まで加熱した後tanδの測定を行なった結果である。Li₂Oの少ないガラス（X = 4, 6）では750〜950℃間でユーバリプタイトが析出するため試料のtanδは増大するが、950〜1200℃間でこの結晶が消失し、スポジメン結晶の

8.3-31
結晶化ガラスの構造と性質

晶が析出するため試料の tanδ は減少する。Li₂O の多いガラス (X = 8, 12) では 750〜950°C 間で同様にヨークリップタイト結晶が析出するため試料の tanδ は増大する。さらに加熱してもスポッショメン結晶の生成は見られないので tanδ は殆ど減少しない。やや減少が見られるのはヨークリップタイトの一部がガラス中に再び溶解するためと考えられる。（b）の因子は、前節に示した感光性結晶化ガラスについて調べた結果によれば、tanδ に対して大きな影響を与えないようである。ただ一結晶粒の大きさを広い範囲で変化させた試料を用いていないので長軸長さ：0.5〜1.1μ、短軸長さ：0.20〜0.35μ。詳しくは不明である。（c）の因子は大きな影響を与える。たとえば Li₂O₄, MgO 15, Al₂O₃ 23, SiO₂ 62（重量比）の基礎組成に Na₂O, K₂O, BaO, CaO, PbO などの酸化物を微量（基準ガラス 104 gr に対し酸化物 0.045 molar）加えたガラスの結晶化物ではそのガラスマトリックス部分にこれらの酸化物が溶解残存し、結晶化物の tanδ に大きな影響を与える。PbO は tanδ を減少させるが、他の酸化物、特に Na₂O, K₂O の添加は tanδ を 10〜15 倍増大させる。（d）の因子も大きな影響を与える。たとえば Li₂O₄, MgO 15, Al₂O₃, SiO₂ 62（重量比）の組成のガラスを、一つは塊状のまま、他は粉末状とした後、加圧成形し、両者が 1200°C まで再加熱し、無孔および有孔（吸水率は 12 個分％）の結晶化ガラスを作り tanδ (1 Mc) を測定したところ、前者は 7×10⁻⁴，後者は 40×10⁻⁴の値を示した。

5.3 誘電率

BaTiO₃ 結晶などを多量に含有する強誘電性結晶化ガラスを作ること、BaTiO₃ のみではガラスにならないので、網目の構成酸化物、たとえば SiO₂, Al₂O₃ を適当量添加したガラスを作る必要がある。添加量が多過ぎると BaTiO₃ 結晶の析出量が多く、添加量が少なければこの状態は、ガラスの成形がむずかしく、薄膜などの成形が不可能となる。適当組成の一例は、SiO₂ 19.5, Al₂O₃ 10.5, BaO・TiO₂ 70.0（重量％）で、このガラスは 50〜200μ 厚の薄膜に成形することが可能である。これは 1100°C で 5 時間再加熱すると、誘電率 E が 200〜400, (1 Mc), tan δ が 0.03 的薄膜結晶化物となる。（32）

強誘電性結晶化物を作ることを試みた場面としては、（a）BaTiO₃ 結晶とともに誘電率の小さいベーキサルシン（Ba₁₂Al₈Si₄O₃₉）結晶が再加熱の際に析出し易い、しかもそれが粉末状に結晶化物表面で、その劈開面が表面と平行になるように配列して析出すること、および（b）析出する BaTiO₃ 結晶粒子が小さ過ぎて（前記組成の結晶化ガラスでは直径 0.1〜0.6μ），E を高める上での最適値と云われる（32）1μ に近づけることが困難なことである。（a）の影響特に結晶化物の厚さに強く現われ、厚さが 0.20μ 以上の試料では E (1 Mc) が 400 のもののが、同じ化学組成でも厚さがそれ以下の試料では 200 に下る。（a）については弾性の微積添加が析出結晶粒子を大きくする上に効果があるとの報告（32）もあるも、ある限定された
た基礎組成についてのみ効果があるようである。第6図上記組成の結晶化ガラスの表面から内部に進むにしたがって、セルシアン結晶の配向性が変化している状態を示すもので、試料を表面から研削し、その途中で露出表面についてX線回折分析を行なった結果である。

5.4 化学的耐久性

結晶化ガラスの化学的耐久性は、たとえば90℃近くの温度に保った5%塩酸中に試料を約3時間浸漬した後、その重量減少を測定することによって比較できる（23）。

特殊な結晶化ガラス、たとえば化学侵蝕による膨張が行なえる結晶化ガラスを除いて、ふつうの結晶化ガラスでは、塩酸の侵蝕は析出した結晶粒界に沿って行なわれる。したがってそこにあるガラスマトリックスの化学的耐久性が結晶化ガラスの化学的耐久性を支配する。結晶化ガラスの原ガラスにガラスを易溶性とするために微量添加するNa₂OおよびK₂Oなどのアルカリは、再加熱の際にマトリックスガラス中に高い濃度で溶解残存し、また添加するZrO₂およびAl₂O₃の一部もマトリックスガラス中に溶解残存する。Na₂OおよびK₂Oはマトリックスガラスの化学的耐久性を劣化させ、Al₂O₃およびZrO₂はそれを向上させる。

ガラスマトリックスの化学的耐久性の向上以外に、析出結晶粒子を小さくすることも、結晶化ガラスの化学的耐久性向上に効果がある。特に熱膨張係数が方向によって著しく異なる結晶粒を含む結晶化ガラスでは、結晶粒間に大きな歪が存在し、その結果ミクロ亀裂が発生している箇所がある。塩酸はそれに沿って急速に結晶化ガラスを侵蝕する。Pt、TiO₂、ZrO₂などの結晶化促進剤を適量添加すると、析出結晶粒径を小さくできるので、発生する歪も小となり、ミクロ亀裂の発生を防止できる。

6. まとめ

ガラスの化学組成およびその再加熱条件を変えて実用結晶化ガラスを作ろうとする研究は従来数多く行なわれたが、結晶化ガラスの微細構造と性質の関係、特に次の諸点はまだ良くわかっていない。（a）析出結晶の固有の性質の影響、たとえば析出結晶の強度とこれを含む結晶化ガラスの強度の関係、（b）結晶化ガラスの表面と内部の微細構造の相違がその性質、たとえば強度におよぼす影響、（c）析出結晶の大きさをどこまで小さくできるか、また結晶粒径を0.1ミクロよりもさらに小さくできる場合に結晶化ガラスの強度はどうなるか、（d）析出結晶とガラスマトリックスの境界附近の微細構造および結晶化ガラスの性質におよぼす影響。これらの問題が明確されれば、結晶とガラス相のさらに複雑な混合系である一般の工業製品の諸性質の理解も容易となるであろう。
高分子の組織構造と物性

笠井 暢民* 岡 則 武*

1. はじめに

高分子物質の物性を論ずるには、その構造と分子運動との2つについての知見が一般に標

* 大阪大学工学部

8.3-34