中国山東省半島部におけるラッカセイ栽培 —その発展とわが国の需給との関係—

前田和美^*（元高知大学）

要旨：世界的な農産物貿易自由化の趨勢の中で、わが国のラッカセイは関税などの行政的保護をうけて約40%の自給率を保っている。しかし、2002年度度、千葉、茨城県県だけで80%以上を占める総生産面積は約3万haと、最も多くかつ1965年構造の1/6にまで減少し、数ぶんの国内消費量に対して原料供給量はわずか2万tに過ぎない。また、この40年間、総生産は約1800万kg/10aを超えることができないが、その価格には、戦後形成されている多収品種への換算や産地拡大に傾向的でないなど需給の問題もある、他方、わが国は、栽培面積の拡大だけでなく、単収向上の成果が著しく、ついにこの10年間でインドを抜いて世界最大のラッカセイの生産・輸出国になり、わが国の食用大粒種の原料、加工品の輸入量でもほぼ100%を占めるようになったが、中国産の輸入原料価格は国内産の数分の一である。このように、わが国のラッカセイの需給とは密接な関係があるにもかかわらず、中国で最大の、そして日本向けの主産地である山東省の半島部地域のラッカセイ栽培についてはよく知られていない。その発展の歴史、伝統的栽培技術、現地調査による栽培の現状などについて紹介する。

キーワード：栽培技術、中国山東省、つなぎ作、伝統農法、需給、ラッカセイ。

1. はじめに
近年、わが国のラッカセイの生産が大きく減少し、さらに、多くの農産物の栽培におけるわが国と中国との関係は極めて密接になっているが、わが国がこの数年間、ガラパノ次第で世界で第2番目の中国産ラッカセイの輸入国であることはあまり知られていない。また、中国におけるラッカセイの生産や輸入統計などの情報は挙げ、栽培の実情や技術についてはほとんど知られていない。筆者はかつてから、国内産ラッカセイ栽培の増大と消費の拡大を「ピーナツ・フォーラム99」（1999年7月、東京）などでも主催してきましたが、同時に、中国産ラッカセイの輸入に際しては、原料の品質や安全性を高め、さらに品種規格の品種の安定供給のために、品種の統一と種子の純度、栽培方法、農薬使用、収穫後の管理など、栽培の段階から、直接、現地の農家に出荷業者に指導することが必要であると述べてきました。そして、2000年数回にわたり、生育の各時期に山東省の日本向け大粒種輸出ラッカセイの産地を視察し、現地でも助言を行う機会があった。本報では、日本作物学会日本支部講演会（2002年11月29日、愛媛県農業試験場）において紹介した山東省の半島部東部地域のラッカセイ（花生）栽培の現状と、生産の発展の歴史や伝統的な栽培技術について述べる。

2. 山東省におけるラッカセイ栽培の発展
中国では、明代、16世紀後半に福建および広東地方に米国引進歴によってラッカセイがほほえられ記載されたといわれ、次第に沿海地方に広まって重要な油糧作物となった。しかし、これらの地方では稲作の拡大に向けて減少し、ラッカセイの栽培が減少した。しかし、わが国では栽培面積が拡大し、需給バランスが改善される傾向にある。本報では、わが国の需給と中国の栽培技術について述べる。

2003年5月6日受付、4月15日採用、第28巻第5号の5月15日発行。
果は、「中国花生栽培学」(1982)や「中国花生品種志」(1987)とも知ることができるが、最近、刊行された「山東花生」(1999)には、栽培の発展、遺伝・育種、作物生理、土壌・施肥、保護、多収種栽培技術、加工・利用などの研究成果と流通・貿易事情について550頁にわたって概成されている。


3. 山東省半島部の農業的自然条件

山東省は、黄河流域に発達した内陸部沖積平原と、黄河デルタ地帯、そして黄海と渤海に突き出した半島部丘陵地帯からなっている(第1図)。いわゆる黄河文明発祥の地で、古代から漁業農業が盛んであり、1982年、中国の「花生7生産区劃」では、江蘇省北部、河北省、遼寧省南部としも32～42°N、117°E に至るが「北方大花区」(山東省花生研 1982, 王1991)または、「黄河流域花生区」、張ら(1987)に属している。そして、日本向けの大粒種ラッカセイの主要生産地は半島部のほぼ36～38°Nの間の地域にあり、「山東丘陵花生区」に属しているが、満州では日本のラッカセイ産地である関東平野の中央部から東北地方南部に相当する。行政区分では、青島市(第級)、薬薬市、臨朐市(第三級)の桑園市(第級)、威海市(第級)の文登、乳山市(第級)などで(注: 山東省の行政単位は、省級行政中心の濟南市を含む)、17 地級市、31 縣級市、47 市轄区、61 市級市からなる。山東省地図図、中国地図出版(北京、2000年)、また、地理区分では「歴(歴)省平原区」と「臨(臨)丘陵区」に属する。土壌や気候条件がラッカセイ栽培に適しているとされ、北方大花区の栽培面積の60%以上を占めて、全国でもっとも栽培が集中する地域である。主要土壤は、花崗岩、片麻岩、砂岩の気化生成物に由来する基盤土で、厳しく求む養分含量に富み、有機質は少なく、保水力がややあらわれ、したがって、山东省花生研(1982)，標高100～200mの平野とややかな起伏の続く地形で、よく管理された耕作が広がっている。

気候は、海洋性気候で「中国東部半島風気候区」に属するが、年平均気温は12℃前後で、7～8月は平均26℃以上、無雪期間が180～200日あり、5～9月の積算気温はラッカセイの生育に必要な約3400℃を満たしている。年間降水量は600～900mmで、7～8月に集中し、日照率は60%とかなり恵まれているが、古くから“十年九旱”いわゆる“春早”や“秋早”と呼ばれる旱魃も常習的に起こる。

4. 作付方式と伝統農法の「套種」について

山東省はリンゴ、モモ、ナシなど果樹の産地としても知られているが、半島部ではイネはあまり見られず、作物は単作で、冬作のコムギと、单作や間作の春作または夏作のラッカセイ、ダイズ、トウモロコシ、カシオンなどの輪作体系が一般である。この地方のラッカセイ栽培型は「魯東夏花生型」に区分されており(山東省農業科学院1999)、以前は、「一年一熟(作)型の隔年輪作をして、「晩生ラッカセイ品種・春カンショ」もあったが、次第に「春ラッカセイ冬コムギ(隔年)夏カンショ(または、夏トウモロコシなどの夏畑栽培作物)」「冬コムギ・套種ラッカセイ(間作)春カンショ、春高粱(モロコシ)など、「三年三熟型」の隔年輪作が多くなっている。

ここで、春は立春から立夏の間の作付けを意味するが、山東省など北方では4月下旬から5月上旬ごろになり、これに前記の「套種」(後述)も含まれる。また、『夏』は立夏後の作付けで、一般には冬コムギの収穫後の5月上旬ごろからの直播になる(陳朝慶1991)。「一年関熟型」の輪作には、「冬コムギ・套種夏ラッカセイ冬コムギーの作付を含む。
（隔年）夏トウモロコシ（または、カンショ）がある。このほか、ラッカセイに食料作物や他作物の生産をターゲット。そして、ハクサイやダイコンなど野菜を組み合わせる「三年輪作」もある。これらにおいて、コンゴ収穫後、その直後に後作物を播種する栽培型は、ラッカセイの例では「麦麦（し）花生」と呼ばれる。稲田（田植）では「草のまつる方角・きき方の」などを意味する。種田（1992）、大沼嘉林、大谷典文、東京）、「麦口」には「previous crop」の訛訶が与えられている（李完明ら 1991）。20世紀60年代の華北の作物制度の記述に、「麦麦作物」や「第二麦作物」、「第三麦作物」の用例がある（李 1986）。なお、「double cropping」が「重茬栽培」の訛訶として使われている。稲田（1992）、大沼嘉林、大谷典文、東京）、「麦口」には「previous crop」の訛訶が与えられている（李完明ら 1991）。20世紀60年代の華北の作物制度の記述に、「麦麦作物」や「第二麦作物」、「第三麦作物」の用例がある（李 1986）。

ところで、前記の「套種」（relay cropping、李 1991）は、「つじお作」（前田 1986）のこと。寒麦作（麦田栽培）とか「麦麦栽培」に有用な作物を、このように、ラッカセイの節度栽培から、夏直播と「套種」の二つの栽培型がある。これら中華、華北の伝統農法としての「套種」について若干触れてみたい。

「套種」は「套作」とも呼ばれる。温度条件などで生育期間が確保された地方で、前作物の収穫後に、その飛来中に後作物を播種する間作の1つである。例えば「麦豆（豆）」、「番茄（トマト）栽培」等が含まれる。とりわけ、冬季の作付を目的とする、耕作採果、施肥、播種等の作業が、さらに「早作と栽培」の時間帯に占められるため、冬作物は販売市場の主流になる。なお、「番茄栽培」や「番茄栽培」の三種類間作が推奨されている。

5. 栽培法と収量

（1）施肥

2001年3月の現地調査では、作付を休廃したラッカセイ作付の試験地では、「農家肥料」があることから、稲田が満盛して、多くの農家が稲田が成長するのを観察した。1m2（6,667a, 1ha 約15m2）の有効面積の割合で、稲田の増加は100kg/kgが使われていたが、その材料の成分量は、施肥が、窒素0.15～0.45、リン酸0.15～0.4、カリ0.3～1.1%および2～20%の有機物、また有用灰分を、分解が速く、窒素0.5～0.8、リン酸0.2～0.4、カリ0.2～0.3%、そして、5～10%の有機物を含むと考えられている（Huら 1995）。
第2図 冬作のコムギとラッカセイのつなぎ作（套種）、コムギ収穫後のラッカセイの幼植物（威勢市辻島町観音寺、2002年6月）。
第3図 同。コムギの収穫中の畑（同）。
第4図 有機肥料が準備されている冬作ラッカセイ作付け予定の畑（栃木市根子黒洞、2001年3月）。
第5図 農家の有機肥料、豚、牛、鶏などが倒われている（同）。

日本作物学会紀事 第72巻 (2003)
第6図 冬の間作期の手摘み作業（栃木市寺平区喜福庄観、同）。
第7図 生育旺盛期の越冬栽培の様子（同平野区洞家埜村、2001年8月）。
第8図 同マルチ栽培の様子（同平野区水道村、同）。
第9図 同、地上部と結実状況。それぞれ1株2個体（同）。
第10図 収穫期の生育状況（栃木市栄町東向き村、2002年9月）。
第11図 同、畑上げと摘発作業（同）。
第12図 同、地上部と結実の状況（同）。
石灰の施用については、現地の農家に質問すると、大粒種ラッカセイの結実には供給的に石灰が必要であるという知識もなく、土壌の酸性の矯正や「消毒」目的での施用については知らないが、施用に経験があると答えた農家はなかった。しかし、農業向けの栽培技術の解読書（村・植 1984）で、イチマサロ科の1株あたり500kg（7.5t/ha）の石灰を施用するのに生育期間中に土壌から8〜12kgの石灰を吸収する、そして石灰が不足すると、空葉や1粒葉が増加する、子実が小さくな る、幼芽褐変症により収穫率の発芽率が悪くなることなどが述べられている。また、大粒種で、石灰が施用され、375〜1500 kg/ha、あるいは石膏で375 kg/haの施用による5〜20%の増収効果が報告されている（ utilizado と 1995）。現地農家は、「石灰の施用は農家にとっては大幸な試みをすべき」と話していたが、農家が石灰や化学肥料をあまり使わないのは生産コスト節約のためと思われる。日本向け栽培農家に対しては、現地農家が石灰を無償で提供してその効果を体験させる試みを始めていた。

現地の農家では、施肥の量の約20%をラッカセイ専用化成肥料で施用していると述べられた。1株あたりの施 肥量は30〜55kg（450〜850kg/ha）である。東京農業研究所による試験、日本農業N.P.K.3要素の含有量が45%以上、またノルシュウ製の同じく25%以上の複合成肥料を用いた例が見られていた。3要素の割合は、15:15:15および2.5:6.75:8.0（微量要素を含む）である。また、山形県で、中程度の土壌の塩濃度を示した技術で施用されている2株のラッカセイ用化成肥料（第1号）、「Bー系」の3要素の標準成分比は1:1.5:2。含有 率は5〜6、8〜9、11〜12%で、その施用量は600〜750 kg/haとなっている。これと有機肥料が併用される。なお、収量水準5〜7.5 t/haの場合、100kgの石灰施用によ り、収量5.18kg、リン1.08kg、カリ2.5kg、そして、 微量要素としてカルシウム1.95kg、マグネシウム1.58kg、硫黄1.28kgが必要であるとされている（Hs 1995）。この収量水準はわが国の実験の単収に比べて約2倍も高いが、収量収穫率では土壌とカリが少々、リンが多い。

(2) 播種期

半島東部地域では、前述の冬作を休耕した畑の「夏直播」栽培が混在している。本種の結実性は、深さ5cmの土層 が12〜15℃になる4月下旬から始まるが、約18℃以上になる5月上旬ごろに集中する。また、コムギとの「套作」栽培の播種期は5月中下旬ごろから始まるが、平均気温は17〜19℃、そして土温は20℃を超えるようになる。

また、産地の気候条件から、多収化と収穫の安定、適期収穫による品質向上の点でも望ましいと思われるマルチ栽培は、栄養地の日本向け栽培農家において、高収成率を追求する傾向にあり、播種は、手播きまたは機械播種で4月下旬から5月上旬に終わっている。この時期は、また平均気温が11℃前後、土地（5cm）が13〜14℃と低い。山形県では1978年に日本からマルチ栽培を導入され、1979年に試験栽培が開始されてから90年代からのマルチ栽培の普及が進んでいる（Hs 1995）。山形県農業技術研究所（1999）、フィルムのコストが1株あたり20円（2002年現在、1株は約15円）かかるのか、労力の点から普及が伸びにくいとのことであった。

(3) 播種法

播種には3つの方法がある。农家向けのラッカセイの平均作付け面積は約3m×（约20a）、最も多くは「開穴播種」を採用する。しかし、一部の農家は開穴播種を採用する。播種は、播種機の使用により、播種は、播種穴を用いて播種を行う方法である。播種機は、播種穴を用いて播種を行う方法である。播種機は、播種穴を用いて播種を行う方法である。播種機は、播種穴を用いて播種を行う方法である。播種機は、播種穴を用いて播種を行う方法である。播種機は、播種穴を用いて播種を行う方法である。播種機は、播種穴を用いて播種を行う方法である。播種機は、播種穴を用いて播種を行う方法である。播種機は、播種穴を用いて播種を行う方法である。播種機は、播種穴を用いて播種を行う方法である。播種機は、播種穴を用いて播種を行う方法である。播種機は、播種穴を用いて播種を行う方法である。播種機は、播種穴を用いて播種を行う方法である。播種機は、播種穴を用いて播種を行う方法である。播種機は、播種穴を用いて播種を行う方法である。播種機は、播種穴を用いて播種を行う方法である。播種機は、播種穴を用いて播種を行う方法である。播種機は、播種穴を用いて播種を行う方法である。播種機は、播種穴を用いて播種を行う方法である。播種機は、播種穴を用いて播種を行う方法である。播種機は、播種穴を用いて播種を行う方法である。播種機は、播種穴を用いて播種を行う方法である。播種機は、播種穴を用いて播種を行う方法である。播種機は、播種穴を用いて播種を行う方法である。播種機は、播種穴を用いて播種を行う方法である。播種機は、播種穴を用いて播種を行う方法である。播種機は、播種穴を用いて播種を行う方法である。播種機は、播種穴を用いて播種を行う方法である。播種機は、播種穴を用いて播種を行う方法である。播種機は、播種穴を用いて播種を行う方法である。播種機は、播種穴を用いて播種を行う方法である。播種機は、播種穴を用いて播種を行う方法である。播種機は、播種穴を用いて播種を行う方法である。播種機は、播種穴を用いて播種を行う方法である。播種機は、播種穴を用いて播種を行う方法である。播種機は、播種穴を用いて播種を行う方法である。播種機は、播種穴を用いて播種を行う方法である。播種機は、播種穴を用いて播種を行う方法である。播種機は、播種穴を用いて播種を行う方法である。播種機は、播種穴を用いて播種を行う方法である。播種機は、播種穴を用いて播種を行う方法である。播種機は、播種穴を用いて播種を行う方法である。播種機は、播種穴を用いて播種を行う方法である。播種機は、播種穴を用いて播種を行う方法である。播種機は、播種穴を用いて播種を行う方法である。播種機は、播種穴を用いて播種を行う方法である。播種機は、播種穴を用いて播種を行う方法である。播種機は、播種穴を用いて播種を行う方法である。播種機は、播種穴を用いて播種を行う方法である。播種機は、播種穴を用いて播種を行う方法である。播種機は、播種穴を用いて播種を行う方法である。播種機は、播種穴を用いて播種を行う方法である。播種機は、播種穴を用いて播種を行う方法である。播種機は、播種穴を用いて播種を行う方法である。播種機は、播種穴を用いて播種を行う方法である。播種機は、播種穴を用いて播種を行う方法である。播種機は、播種穴を用いて播種を行う方法である。播種機は、播種穴を用して
*multicarpa* と、独自の学名を与えている分類がある（山東省花生研 1987）。この分類は、亜種名は生殖節配列様式、そして、変種名は、それぞれ、「普通型」と「亜生型」、および「珍珠豆型」と「多粒型」という中国の実用品種分類群名をラテン語化した命名である。しかし、最近では、前記の国際的な系統分類が採用されている（山東省農業科学院 1999）。中国では、食用、摂油用の多くの在来品種起源の選抜育成品種および交雑品種があり、そして、1990年代頃から始まった2種間交雑選定の「間型」品種も増えている（山東省花生研 1987）。

現在、日本向け輸出用の大粒種としては、実験のサイズ規格と加工適性にあった「花17（Hua 17）」が主力品種として栽培されているが、純度保持のために現地業者、選別・加工工場が種子を増築して契約農家に配布するように指導している。この品種「花17」は、1967年に山東省花生研究所で、*hypogaea*の在来品種の育種実験で作成された品種「雛選4号」を母種に、および同種の在来選抜品種「東陽栽培産豆」を父種として交配。育成された品種であれば、生育日数は130日の中生種、草丈は20cm、株高30.5 cm、結実枝数9本、総分枝数22本、1kgあたり収量298個、種子数356粒、100粒重235.6 g、100粒重108.4 g、割き実数72.1%などの特性をもつとされ、1981年以降、代表的な栽培用品種として広がっている（山東省花生研 1987）。2000年および2001年の産業最盛期の7～8月の露地および露地栽培での結実は、前述のような密植で養分が有限面をほとんど覆っていたが、抜き取り栽培では、草丈は約40～50cmあったが、1次分枝数が4～5本と少なかった（第7、8図）。筆者が高知で2年試作した結果ではほぼ同様の地上部の特性がみられた。

(6) 生育型と収量性

2002年9月20日以降に行われた露地栽培の品種「花17」の収穫期調査では、草丈は30～40 cmで、2次分枝数が少なく、褐腐病がみられるとほとんど落葉し、直立する主茎と数本の1次分枝の頂部に残髪が残るだけの根であり、そして、降雨がないので土壤が乾燥し、ほとんど成長が止まっていると考えられる。熟果2割収穫後1日体あたり4～5個と少なく、また、1粒重が多分傾向がみられたが、同時に未熟果がほとんどないことが注目された。同様の傾向は、現地業者に委託して同月9月13日に14の村の石灰施用および無施用、マルチおよび無マルチの4処理の畑から無作為に選んだ5株（1株2個体、計50個体につき結果調査の結果でも認められた（第9～12図）。

以上の観察結果から、個体の生育が品種の栄養成長特性とあいまって、低地力、低栄養、そして密植条件での「適正基盤」となっていること、すなわち、少分枝性が総数の減少と適当な葉数の抑制、そして少開花数をもたらし、株間の早期に開花した少数の花が有効花となるという、密植、低栄養成長性にあたっての精算性が自然と存在しているので、作物分類から「理想生育型」になっていることがうかがわれた。

このような品種「花17」の生育型の特徴は、わが国の品種「たチマサリ」に近いといえる（前田 1993）。

ここで、前記の栽培密度と、1か月以上乾燥した手選別上収の1個果2.4 g（2粒果20 g、5個果平均）、そして、1個果あたり5個として計算すると、収穫収穫量は3120 kg/ha、割き実数換算（×0.7）では2184 kg/haという比較的に高い収穫に至る。前記の現地業者に委託した14の村の調査データで、露地栽培の280個体の2粒果と1粒果をあわせた上収果は1個果平均16.1 g（同実数、8.7 g）であった。これから試算した収穫収穫量は2086 kg/ha、割き実数換算では1450 kg/haとなる。

なお、2002年度に実施したマルチ栽培では露地栽培に比べて出芽速度が早まり、10～14日の開花前の早期効果が認められ、収穫も早く行われた。収量と品質面におけるマルチ栽培および石灰施用の効果については、今後も継続して調査する必要がある。

参考までに、大粒種品種のマルチ栽培の普及に努めていいる「北方大花生区」の地域における多収化の例をみると以下のようである。16の省および行政区の農業普及局によると1979～84年のマルチ栽培実験について中国農業部が取り扱った結果によると、3.75～4.5 t/haの実付収穫が得られ、その最高収穫は10.5 t/haであったが、これらは成績は露地栽培よりも20～50%増であった。また、遼東、遼南、河北、河南、陝西の5省および北京直轄市の1985年度の露地栽培の平均単収は2.14 t/haであったが、マルチ栽培では、そのほぼ2倍の4.19 t/haであった。また、1985年に山東省農業局が数値地から極地地までの圃場で行った131マルチ栽培比較試験では、露地栽培の1.91～8.08 t/haに対して、マルチ栽培では2.84～9.56 t/haとして成績が示されている（Hua 1995）。中国農業部の多収化目標単収は、2000年の3.6 t/haに対して、2005年および2010年にはそれぞれ、3.8および4.05 t/haである（山東省農業科学院 1999）。

(7) 取種

筆者は、1986年9月に山東省花生研究所（萊西市）に招かれた折りに初めて同省半島部地方のラッサセイ栽培産地を見たが、今日でも当時と同じ収穫景観が見られ、多くの農家は、剪枝機械に装着した歯で梱包した株を、畑で手で掴みしていた（第11図）。残った株は一輪車で運んで家で梱包し、庭や道路に広げて乾燥していた。収穫した稲を畑で2～3日、干し下げ、という農家もあるが、野焼き乾燥をした農民のほうは茎の芯が湿った心配があるとのことであった。露地栽培の茎葉残渣は、庭園近くに積みあげられ、家畜の飼料や有機肥料の材料にされる。しかし、マルチ栽培について、筆者、葉菜の栽培地被覆は廃温効果がなくなり、また、土壤の乾燥で収穫種子の発芽障害を起こす危険もあるので干し留め前処理のフィルムの除去を勧めたが、一般に農家は乾燥に弱く収穫期の結実後、土壌水分保持理由を理由にフィルムを除去しない。したがっ
て、フィルムの混入したマルチ栽培の薬剤は薬剤には利用できないので焼却にしているが、フィルム片の飛散とともに公害が懸念されている。冬作準備のラッカセイ跡地ではフィルムの碎片を集めて農民も見た。

契約農家から買い集められた乾燥した土菜は、冬の農閏期に加工工場や村の作業場で彼女たちによって手選別され、あるいは手割きされお手数料の見なしで農民が自社で業、土菜の量を調節したうえで、容器内に包装される（第6図）。

残留農薬について
近年、中国産の輸入冷凍野菜の残留農薬が大きな問題になっているが、ラッカセイでは、わが国では1989年に食用品作物について規制から外され、さらに1992年に全作物で規制が解かれている。小麦農薬ラッカセイが出検された割合は安定しており、規制が厳しくても輸出に遅れが見られない。筆者らは、山東省は果樹産地としても有名で、農薬散布が多い果樹園近辺の別のラッカセイの販売に影響されない、あるいはその収穫後の農薬混入の事案を注意したが、完全確認は取り扱わない現地輸出業者も多い。なお、土菜を栽培する農家には、農薬の管理を務めており、これにより生産者の安全を守ることができる。農薬の使用は、コスト面だけでなく、現地での農薬の管理からできる限りの農薬の混入を防ぐことが必要である。土菜の農薬残留を防ぐためには、これらの問題を解決する必要がある。

しかし、山東省では、「Bナイン」は「比久」（B9）、あるいは、「アラ」（Alar）などと呼ばれて1970年代の中頃から試験が行われ、山東省の農薬の品目が著しく減少し、中高性農薬では800～1500 ppmの農薬の使用定額に従って散布される。農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制されることで、農薬の使用が規制される。
は産地や品種ブランドに名を借りた「小生産量」「高価格」維持が目的だったとみられる。このことが、戦後、収量の増産した誇りが育成され、昭和40年代にはマルチ栽培技術の普及と産地が九州、そして東北地方にまで拡大して、収量や生産が増大する機運もあったにもかかわらず、この40年間、全国平均単収が潜在的収量の1/3以下で極めて低い水準（前田1993）の200kg/10年a前後で低迷しているとの大きな原因である。このことから、近年、品質向上を通じる中国産との価格差を数億枚拡大し、供給量の絶対的な不足にあえぎ、一般消費者が国内産ラッカセイを選択する機会を奪って消費の増大を自ら阻んでいる。行政に生産増大の努力の可能性を期待できなかった現在からは、今後、原料栽培や消費に占める中国産ラッカセイのシェアはさらに拡大し、やがて、ラッカセイ作物もまた、米国産に駆逐されたダイズと同じ進むことになるのでは懸念される。

おかげで、多くの農産物の入荷価格競争がますます厳しい状況下で国内ラッカセイの栽培は更に延びるためには消費の増大しかない。そのためには、「安全」と強調して、高品質な国内産を購入できる一部消費者のみを対象にすることではなく、輸入品と競争できる適正な価格にするために単収を現在の2～3倍に増やすることである。品種の転換と産地農家の意欲が前提となるが、今後農家が価格でそれが実現可能であることを共通の座談会での成績を実証している。好品種に対してだけでなく、理解を深めるための必要も高めて、栄養食品であるラッカセイの国内消費を増大すること、そして、水田栽培地でも栽培が可能な省力、省資源作物であるラッカセイの潜在的生産力をさらに引き出し、国内の栽培、生産量を増やすためには、まず何よりも栽培と育種の研究者のラッカセイの関心がもっと高まることが望まれる。

引用文献
前田1993. 伊豆・インド・アラブラディ州の農業. 農耕の技術. 61〜1〜9.
前田1998b. アジア農耕と栽培. 農耕の技術. 10:54〜73.
西山武一. 1999. 農業資料集. 農業要望. 上. アジア農業出版会. 東京. 77〜82, 321〜322.
山東省花生研究会編. 1982. 中國花生栽培学. 上海科学技術出版社. 上海.
山東省農業科学院・王在元・董善銘主編. 1999. 山東花生. 上海科学技術出版社. 上海.
石村明編. 1986. 藤の花. 岡村秀夫・志田栄子. 農業出版. 北京. 84, 90.
張承祥・張順利・李樹琛・金華. 1987. 中國花生種植指針. 中國農
Groundnut Cultivation in the Peninsular Region, Shandong Province, China—Its development, practices and relation to the supply and demand in Japan—: Kazumi Maeda (Formerly, Kochi University, Kochi-ken, Japan, 781–5205)

Key words: China, Cultivation practices, Groundnut, Relay-cropping, Shandong, Traditional farming systems.