コムギおよびオオムギにおける家系図から計算した近縁係数と分子マーカーから推定した遺伝的距離との関係

小林俊一 1,2）・吉田智彦 3）

(1) 東京農大栽培化学研究部, (2) 東京農大栽培化学研究科, (3) 宇都宮大農学部

要旨: 品種育成において, 交配親を選定する際に遺伝的背景を把握しておくことは, 育種の効率化のために有効である。そこで, 関東周辺地域のムギ類品種の交配記録や系統から統計的に近縁係数を算出した。次に, これらの品種間で RAPD 分析による同一のバンドを示す DNA マーカー数と根絶の遺伝的距離 D を算出した。このことは, コムギ, オオムギにおいて今回の方々から得た遺伝情報は, 育成の過程で後代にほぼ均等に分離していたことを示すと考えられた。遺伝情報を利用した DNA マーカーおよび近縁係数による簡便な血縁関係の推定は利用価値が高いと考えられる。なお, 同一品種数と遺伝的距離の相関係数は極めて高かった。遺伝的多様性の維持を意識しながら品種育成するためにもこれらの情報の有効利用が必要と考えられた。

キーワード: 遺伝的距離, オオムギ, 関東地域, 近縁係数, コムギ, DNA マーカー, RAPD 分析

近年のムギ類生産は, 民間流通の仕組みや銘柄, ランク区分等により, 実需者の要望に応えられる高品質な求める。品種の育種目標は一定の収量や栽培特性を保持しつつも品質の向上が中心となっている。この傾向により, 母本として自ずと高品質の品種や系統が組み合わされ, 遺伝的に近縁と考え変異の拡大が難しく, 近縁度が高まってきていると推定される。この近縁度の高まりは, 今後, 品種識別マーカーを開発していくうえでの支障となることが考えられる。従来の選定でも遺伝的品種が増加し特性が似通ってくる。新たな品種の採用が難しくなる。育種においても, 交配計画を策定する際に交配親となる品種や系統間の遺伝的背景を解析し把握しておくことは効率的な品種育成や遺伝的多様性の維持のために重要となってくる。

遺伝的背景を把握する方法としては, 交配親となる品種間の近縁係数や遺伝的距離の解析があげられる。

近縁係数, 品種の系統図を基にして共通祖先品種から統計的に算出する手法である。近縁係数の算出はコムギ（水田・吉田 1996a）およびピールオオムギ品種（水田ら 1996b）では系統図のデータベースが入力されている推論型コンピュータ言語の Prolog を用いることにより, 迅速かつ簡単にできるようになっている。さらに, このプログラムおよびこれを利用したデータベースは従来 MS-DOS 上での処理系で実施していたが, 現在では吉田（2004）により Windows 上で作動させられるようになった。このプログラムによる近縁係数の算出方法は, 両親の遺伝物質を親種が半分ずつ受け継ぐもの仮定をとして算出を行うものである。

遺伝的距離は, 分子マーカーなどを指標とした集団間の差から次元変換における距離を求め, 遺伝的相関性を算出する方法である, Smile 2002 はコムギを用いて遺伝的距離と品種の系統図からみた祖先の共通の割合を比較し, 良く一致したと報告している。また, 内村ら（2004）は国内の二条オオムギ 22 品種を用い, 近縁係数と分子マーカーによって算出した遺伝的距離との関係を解析し, 現在, これらの関係には有意な相関を認めている。

そこで, 本報告では, コムギおよびオオムギについて, 育種の効率化のために遺伝的背景を把握する方法として次に述べる手順の有用性について検討した。まず, Random Amplified Polymorphic DNA（RAPD）分析による栃木県を中心とした関東周辺地域におけるムギ類優良の品種識別（小林・吉田 2006）で用いた品種について, 交配記録の系統図から統計的に近縁係数を算出した。次に簡単な品種間での違いを把握するため, 品種間で同一のバンドを示した DNA マーカー数（以下, 同一マーカー数と記す）を計算した。さらに品種間の距離の尺度を比較可能にして, より普遍化するためにマーカーの多型から根絶の遺伝的距離 D（根絶 2002）（以下, 遺伝的距離 D と記す）を算出した。これら, 同一マーカー数と遺伝的距離 D で近縁係数がどの程度説明できるか検討した。

材料と方法

1. 供試品種

供試品種は既報 (小林・吉田 2006) で供試した, コムギでは小麦農大 61 号, イワイノダイト, タマズミ, 春のかがやき, きぬの波, つるびかり, ダブル 8 号, シラノコムギ, あやひかり, 小麦農大 26 号, キロネム, シメイサイ, ウズベス, しゅんよう, カメサホ, バンドウウセ, およびニホンカオリの合計 17 品種である。オオムギでは二条オオムギのミカモゴールデン, スカイゴールデン, あまぎ二条, なす二条, みょうぎ二条, カタホゴールデン, きぬ
か二条、はるな二条、および関東二条35号を、六条オオムギのシュンライ、東山皮101号、ミノリムギ、カシマムギ、マサカドムギ、さやかぜ、すずかぜ、ファイバースノウ、センゲツモチ、および樫ムギのイチバンボンの合計19品種である。交雑の両親名、育成地などは既報（小林・吉田2006）に示した。

2. 同一マーカー数
DNA多型のデータは供試したコムギ17品種とオオムギ19品種間について、RAPDマークリーにより検出したコムギ23種類、オオムギ33種類のDNA多型で、PCR増幅産物がある。つまり、品種にそのDNAマークが現れた場合を'1'，現れない場合を'0'とした（値は前報（小林・吉田2006）の第2表および第4表に示した）。前報の第2表および第4表に示した範囲内、ある1品種と他の1品種で同じく現れたDNAマークの数を同一マーカーとし、すべての品種相互間で計算した。つまり、コムギでは136組合せ、オオムギでは171組合せである。品種間の同一マーカー数はVisual Basicでプログラムを作成してコムギ、オオムギ別に算出した。

3. 遺伝的距離
品種間の遺伝的距離Dをコムギ、オオムギ別に以下の式で算出した。なお、算出に用いた品種の遺伝子頻度の値は同一マーカー数に用いたデータと同一である。

\[D = - \ln \left(\frac{\sum p_i x \overline{p}_j}{\sqrt{\left(\sum p_i^2 \right) \left(\sum p_j^2 \right)}} \right) \]

ここで、\(p_i \): 集団1（品種1）のi遺伝子座の遺伝子型の頻度、\(p_j \): 集団2（品種2）のi遺伝子座の遺伝子型の頻度である。計算には、Felsensteinによるプログラム（注：PHYLIP http://evolution.gs.washington.edu/phylip.html）を用いて行った。

4. 近縁係数
自殖作物の2個体X、Y間の近縁係数、\(r_{XY} \)は2個体間の共通祖先をZとし、n1、n2をX、YからそれぞれZへきかぼる世代数とすると。

\[r_{XY} = \Sigma (1/2)^{n1+n2} \]

で求める（酒井1957）。ここで\(\Sigma \)は共通祖先へきかぼる全経路の和を示す。

近縁係数の算出は、水田ら（1996a）が作成した推論型コンピュータ言語のPrologを用いたデータベースと近縁のデータを付け加え、Windows版のプログラムによって行った。突然変異系、純系淘汰品種、変種は原品種と同一として計算した。古い品種の記録の若干の相違は計算結果に大差をもたらさないので確認されている（吉田1999）。近縁係数と同一マーカー数や遺伝的距離Dとの相関係数を計算した。

結果

1. 同一マーカー数
コムギでの同一マーカーの算出結果を第1表に、オオムギでの結果を第2表に示した。コムギで同一マーカー数が23の内の20を上回っている組合せは、イワイノダイチと春のかがやきおよびあやなり、タマイズミとあやなりおよびキヌヒメ、春のかがやきおよびあやなり、あやなりとキヌヒメであり、品質特性が類似している系統は同一マーカー数が多い傾向であった。また、これらの5種種はクラスター分析の結果でも（小林・吉田2006）、デンドログラムにおいて1つのクラスターを形成しており、同一マーカー数とクラスターの結果は同様の傾向を示した。イワイノダイチ、春のかがやき、およびあやなりは共通の親として西海168号（後のきぬいろは）が使われていた。硬質粘品種であるタマイズミとあやなりおよびキヌヒメ間で同一マーカーが多い原因は明らかではなかったが、系譜図を遡ると各育成地の品種が交配に使用されているためと考えられる。

オオムギでも同様に品質特性が類似している系統では同一マーカー数が多かった。特に、二条オオムギと六条オオムギについての検討も必要である。
2. 遺伝的距離 D

コムギの遺伝的距離 D の計算結果を表 3 に、オオムギを第 4 表に示した。コムギの遺伝的距離 D の結果では、計算結果が 0.1 以下と遺伝的距離 D が近いと示されたのはイワノイダイチと春のかがやき及びあやひかり、タマズミとあやひかりおよびキャンペーンであった。また、次いで 0.14 と近かったのは春のかがやきとあやひかりであった。二条オオムギ品種間では 0.03～0.45、六条オオムギ品種間では 0.03～0.61 であるのに対し、二条オオムギ品種と六条オオムギ品種間では 0.50～1.19 と遠かった。これらは同一マーカー数から得た結果とはほぼ同様の傾向であった。

3. 近縁係数

コムギにおける品種間の近縁係数は 0.02 から 0.75 に
分頃していたが、ダブル8号とタクコボハ間で0.75、
春のかがやきとパンドウハ間で0.69と高かった以外は
0.6以下であった（第3表）。

オオギでは、全品種間では0.10から0.78とコギ
や六条オオギよりも高い傾向がみられた（第4表）、特に、
るな二条ではミカモゴールデンとの間で0.62、みよう
ぎ二条との間では0.75、きぬが二条とでは0.78と高い近
縦係数がみられた。六条オオギの品種間での近縦係数は
0.02から0.69であった。シュンライとミノリノギ及び
ファイバースノウはいずれも0.69と高かったが、他ほ
どのような0.5以下であった。二条オオギ品種と六条オ
オオギ品種間の近縦係数は0.00から0.13と低かった。

4. 遺伝的距離と近縦係数の関係

近縦係数と遺伝的距離Dとの相関係数を求めた。コギ
の結果を第3表および第3図に示した。全品種相互間の組
合せによる場合では、r = -0.511で1％水準の有意な相
関が認められた。イワニノダイチと他品種間の組合せに
限った場合の相関係数は、r = 0.892で1％水準で有意
であり、相関係数の値が高くなった。

オオギの計算結果を第4表および第4図に示した。全
品種相互間の組合せでの場合は、r = -0.659で1％水準
の有意な相関が認められた。スカイゴールデンと他品種間
の組合わせでの相関係数は、r = -0.770であった。図
ではオオギの傾向と異なり、X軸に沿って分布したもの
が多い傾向であった。

考 察

本報告では品種間多型の現れたコギおよびオオギに
おいて、同一マーク数、遺伝的距離Dおよび近縦係数を
計算した。どの値も系譜、育成地、交配歴などを良く反映
し、品種間の類似性や同様の傾向を示し、クラスター分析
の結果（小林・吉田2006）と概ね一致した。

全品種相互間での同一マーク数と近縦係数との間に
は、有意な相関関係がみられた。さらに、コギではイワ
イノダイチ、オオギではスカイゴールデンと他品種間の
組合せに限った場合の相関係数はさらに高くなった。オオムギでは X 軸に偏る傾向があり、また近縁係数が 0 である
にもかかわらず同一マーカー数が 6 から 20 に並んでいる
場合があったが、これは二条オオムギと六条オオムギで系
譜図上で同じ祖先品種が無いが、共通の祖先が実際には
存在していたことを示している。次に、近縁係数と遺伝的
距離との関係も同一マーカーの場合と同様で、オオムギでは
全品種間で、r = -0.511 の有意な相関が認められた。イ
ワイノダイチの他品種との相関係数最も高く、r =
-0.892 であった（第 3 図）。図中、DNA 多型の検出率
からみて遺伝的相似度が高く遺伝的距離が近いにもかか
わらず交配記録による系譜上では類縁関係がありない場合
は、全体の傾向の左下に位置している。逆に、DNA
多型の検出率からみて遺伝的相似度が低く遺伝的距離が遠
いにもかかわらず系譜上では互いに共通な交配親が互い
に使われていた場合には、図の右上に位置する。図では全体
的に左下に分布する傾向が認められた。この原因は、
低アミロースか製パン用の硬質粒品種が交配親として入っ
てきており、これらが交配記録上では類縁関係がないが、
遺伝的背景からみると前述の形質以外は従来の育種目標
であるため、共通している遺伝子領域が多いためと考えられ
る。

オオムギの近縁係数と遺伝的距離 D との関係をみると、
全品種相互間での値の場合、r = -0.659 の有意な相関が
認められた（第 4 図）。スカイゴールデンは六条オオムギ
の耐病性を導入した二条オオムギ品種で、他品種と遺伝的
背景が似通った部分があると考えられる、スカイゴールデ
ンと他品種との組合せでの相関係数をみると、r = -0.770
と高い値であった。

オオムギの場合はコムギと異なり、X 軸に沿って分布し
ている傾向がみられた。これは、DNA マーカーで推定し
た遺伝的距離が近いにもかかわらず、系譜上の類縁関係は
近いものから遠いものまで分布していることを示してい
る。系譜上では共通祖先の二条オオムギと六条オオム
ギを一緒に比較しているためと考えられる。特に、ただ 1
つ供試した裸ムギであるイチバンボシの他品種との相関係数
は r = -0.120 と最も低くなっている。

このように一部の不整合性はあるにせよ、系譜上の類縁
関係から計算した近縁係数は同一の DNA マーカー数や、
遺伝的距離とオオムギ、オオムギ共に有意な相関関係が認め
られた。

なお、遺伝的距離 D と同一マーカー数との関係をみるた
め、オオムギの両者の相関を第 5 表に、オオムギを第 6 表に
示した。オオムギでの相関係数は r = -0.993 から -0.999
に分布し、全体で r = -0.993 と極めて高かった。オ
オムギでの相関係数はオオムギよりやや低いか、r = -0.975
から -0.996 に分布し、全体でも r = -0.983 と極めて高
かった。根元による遺伝的距離 D は品種相互間の距離の尺
度として単なる同一マーカー数より普遍的であるが、こ
こでの結果は、単にマーカーが同一であるかどうかを教ず
るのみでも、品種相互間の遺伝的な違いを推定するのに有
効であることを示している。

本論文の結果は近縁係数が同一マーカー数や DNA マー
カーから算出した遺伝的距離 D からある程度の裏付けがな
され、今回 DNA マーカーで検出した多型が存在する染色
体領域は、品種育成の過程の選抜や淘汰により大きく偏る
ことなく、後世には半数等に分離していたことを示して
いる。内村ら（2004）が国内の二条オオムギ 22 品種で調
査した結果でも近縁係数と遺伝的距離 D の相関係数は r =
-0.526 であり、今回の結果はコムギや二条オオムギおよ
び六条オオムギを含めたオオムギ品種間でも同様な結果で
あることを示した。
第5表 コムギ品種における遺伝的距離Dと同一マーカーの関係。

<table>
<thead>
<tr>
<th>品種名</th>
<th>遺伝的距離平均</th>
<th>同一マーカー平均</th>
<th>相関係数</th>
</tr>
</thead>
<tbody>
<tr>
<td>小麦農林41号</td>
<td>0.518</td>
<td>14.0</td>
<td>-0.994</td>
</tr>
<tr>
<td>イワニノダイチ</td>
<td>0.367</td>
<td>16.3</td>
<td>-0.993</td>
</tr>
<tr>
<td>タマイズミ</td>
<td>0.389</td>
<td>15.9</td>
<td>-0.996</td>
</tr>
<tr>
<td>春のかがやき</td>
<td>0.377</td>
<td>16.1</td>
<td>-0.995</td>
</tr>
<tr>
<td>きぬの波</td>
<td>0.461</td>
<td>14.6</td>
<td>-0.998</td>
</tr>
<tr>
<td>つるびかり</td>
<td>0.405</td>
<td>15.5</td>
<td>-0.997</td>
</tr>
<tr>
<td>ダブル8号</td>
<td>0.530</td>
<td>13.8</td>
<td>-0.994</td>
</tr>
<tr>
<td>シラネコウギ</td>
<td>0.437</td>
<td>14.9</td>
<td>-0.998</td>
</tr>
<tr>
<td>あやひかり</td>
<td>0.398</td>
<td>15.9</td>
<td>-0.994</td>
</tr>
<tr>
<td>小麦農林26号</td>
<td>0.432</td>
<td>15.1</td>
<td>-0.998</td>
</tr>
<tr>
<td>キヌヒメ</td>
<td>0.442</td>
<td>15.6</td>
<td>-0.995</td>
</tr>
<tr>
<td>エメセイキ</td>
<td>0.504</td>
<td>14.0</td>
<td>-0.997</td>
</tr>
<tr>
<td>フウセツ</td>
<td>0.446</td>
<td>14.8</td>
<td>-0.997</td>
</tr>
<tr>
<td>しゅんよう</td>
<td>0.657</td>
<td>12.1</td>
<td>-0.999</td>
</tr>
<tr>
<td>エメアサヒ</td>
<td>0.554</td>
<td>13.4</td>
<td>-0.995</td>
</tr>
<tr>
<td>バンドウサセ</td>
<td>0.457</td>
<td>14.8</td>
<td>-0.996</td>
</tr>
<tr>
<td>ニシノカオリ</td>
<td>0.570</td>
<td>13.1</td>
<td>-0.997</td>
</tr>
</tbody>
</table>

遺伝的距離平均はある品種と他の16品種の遺伝的距離の平均値。
同一マーカー平均はある品種と他の16品種の同一マーカー数の平均値。
相関係数は遺伝的距離平均と同一マーカー平均との相関係数。

第6表 オオギ品種における遺伝的距離Dと同一マーカーの関係。

<table>
<thead>
<tr>
<th>品種名</th>
<th>遺伝的距離平均</th>
<th>同一マーカー平均</th>
<th>相関係数</th>
</tr>
</thead>
<tbody>
<tr>
<td>関東三条35号</td>
<td>0.617</td>
<td>18.1</td>
<td>-0.994</td>
</tr>
<tr>
<td>ミカモゴールデン</td>
<td>0.605</td>
<td>18.1</td>
<td>-0.992</td>
</tr>
<tr>
<td>スカイゴールデン</td>
<td>0.495</td>
<td>20.2</td>
<td>-0.995</td>
</tr>
<tr>
<td>あまぎ二条</td>
<td>0.703</td>
<td>17.3</td>
<td>-0.979</td>
</tr>
<tr>
<td>なす二条</td>
<td>0.517</td>
<td>19.8</td>
<td>-0.995</td>
</tr>
<tr>
<td>みょうぎ二条</td>
<td>0.526</td>
<td>19.9</td>
<td>-0.995</td>
</tr>
<tr>
<td>クカホゴールデン</td>
<td>0.520</td>
<td>19.7</td>
<td>-0.996</td>
</tr>
<tr>
<td>きぬか二条</td>
<td>0.569</td>
<td>19.5</td>
<td>-0.985</td>
</tr>
<tr>
<td>はるな二条</td>
<td>0.557</td>
<td>19.9</td>
<td>-0.993</td>
</tr>
<tr>
<td>ショウライ</td>
<td>0.578</td>
<td>18.7</td>
<td>-0.989</td>
</tr>
<tr>
<td>東山皮101号</td>
<td>0.469</td>
<td>20.7</td>
<td>-0.996</td>
</tr>
<tr>
<td>ミナイムギ</td>
<td>0.500</td>
<td>20.1</td>
<td>-0.993</td>
</tr>
<tr>
<td>カシマムギ</td>
<td>0.621</td>
<td>18.2</td>
<td>-0.996</td>
</tr>
<tr>
<td>マサカドムギ</td>
<td>0.707</td>
<td>17.0</td>
<td>-0.975</td>
</tr>
<tr>
<td>さやかぜ</td>
<td>0.635</td>
<td>18.2</td>
<td>-0.984</td>
</tr>
<tr>
<td>すずかぜ</td>
<td>0.663</td>
<td>17.9</td>
<td>-0.983</td>
</tr>
<tr>
<td>フアイバースノウ</td>
<td>0.536</td>
<td>19.7</td>
<td>-0.994</td>
</tr>
<tr>
<td>センゲツモチ</td>
<td>0.497</td>
<td>20.2</td>
<td>-0.994</td>
</tr>
<tr>
<td>イチバンボシ</td>
<td>0.512</td>
<td>19.7</td>
<td>-0.994</td>
</tr>
</tbody>
</table>

全体 | | | -0.983 |

遺伝的距離平均はある品種と他の16品種の遺伝的距離の平均値。
同一マーカー平均はある品種と他の16品種の同一マーカー数の平均値。
相関係数は遺伝的距離平均と同一マーカー平均との相関係数。

小林・吉田（2006）はクラスター分析の結果から、用途や育成地每に特異があり、また遺伝的多様性が残されていると述べている。また、大里・吉田（1996）によれば、水稲で福岡県農業総合試験場育成系統を用試し、コンピュータを用い系統のコヒカリと祖先に持つ系統とコヒカリとの近縁係数を算出し、0.404から0.783に分布したとしている。今回最も高い近縁係数を示したのは、コムギでは春のかがやきで0.10から0.69、オオギでは二条オオギ内で比較した場合のほるな二条で、0.24から0.78であった。その値は水稲と比較するとまだ低い値であり、また遺伝的多様性が残されていると思われる。現状では品種間の遺伝的背景の違いは近縁係数の計算で比較的簡単に推定可能であるともに、一方では近縁係数が高まってくることが予想され、また、二・六条オオギ間の交雑で近縁係数が0でも分子マーカーで関連性が認められることがある等から分子マーカーによる同一マーカー数や遺伝的距離Dの推定も重要になってくると思われる。今後、分子育種の発展にともない、RAPD分析だけではなく、遺伝情報が明らかになっていいく制限酵素サイトを利用するAmplified Fragment Length Polymorphism（AFLP）分析やCleaved Amplified Polymorphic Sequence（CAPS）分析、および有用途系統に連鎖したSimple Sequence Repeats（SSR）分析等も考えられる。
内村ら（2004）は二条オオギ品種を材料として、家系図から計算した近縁係数と分子マーカーから推定した遺伝的
Relationships between Coefficient of Parentage Estimated from Pedigree Record and Genetic Distance Estimated from DNA Polymorphism in Wheat and Barley Cultivars

Shun-ichi KOBAYASHI 1,2) and Tomohiko YOSHIDA 3)

(1)Tochigi Agr. Exp. Stn., Utsunomiya 320-0002, Japan;
(2)Tokyo Univ. of Agr. and Tech.;
(3)Utsunomiya Univ.

Abstract: In breeding, understanding of the genetic background is effective for efficient improvement. The coefficients of parental correlation between the main cultivars of wheat and between those of barley in the Kanto Region were calculated based on their pedigree record. The number of same DNA markers in random amplified polymorphic DNA (RAPD) analysis and Nei's genetic distance between these cultivars were also calculated. The coefficient of correlation between the parental correlation and the number of same DNA markers was 0.581 ± 0.904 in wheat and 0.751 ± 0.805 in barley. The coefficient of correlation between the parental correlation and Nei's genetic distance was −0.511 ± 0.892 in wheat and −0.659 ± 0.770 in barley. These results show that the genetic codes detected by the molecular markers were nearly equally distributed to the offspring in the breeding process in wheat and barley. The results also showed that although the DNA markers in RAPD analysis are useful, the rapid estimate of kinship by the parental correlation is still effective. The number of the same DNA markers in RAPD analysis was highly correlated with Nei's genetic distance.

Key words: Barley, Coefficient of parentage, DNA marker, Genetic distance, Kanto region, RAPD analysis, Wheat.