大麦品種の分類と地理的分布に関する研究（第3報）*

芽穂の長さの遺伝とその育種的意義

高橋隆平

（大原農業研究所）

Studies on the classification and the geographical distribution of the barley varieties. III. Inheritance of the coleoptile length and its significance for the breeding. R. Takahashi.

1. 緒 言

竹崎氏（1927）は本邦大麦品種の穂長、芒長及び芒狀より8種の芒型別に大別されることがに品種調査及遺伝的研究により明らかにした。著者も同様に芽穂の長さの遺伝研究を加えて、既設同様の結果を導き、なお4種の穂型群相互間に種々の特異について差のある事を観察した（第1、第2報告）。も、此等の関係中穂型及芽穂節間長、穂長、芽穂の長さ及び穂長の関係につき遺伝的研究を行い、又その結果の實際大麦育種への適用の可能性につき若干の実験及考察を行ったので、ここにその要旨を報告する。

2. 実験材料及方法

穂型（普通型）穂型（L）、同密穂（M）、溢性（短型）穂型（M′）及び同密穂（D）の何れかに属する品種21相互間に32交雑を行い、内15はF₂まで、4はF₃まで調査した。ここには次の2交雑に関する結果のみを例示する。

<table>
<thead>
<tr>
<th>交雑</th>
<th>1. 備前早生塔1穂（M′）×備前早生36穂（M）</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. 備前</td>
<td>(大谷）×早木曽2穂（M）</td>
</tr>
</tbody>
</table>

実験植物の栽培管理及成積植物の特性調査は第1、第2報の通りに行った。栽培植物は一般には強く温室散光（100 lux）下で砂砂し、芽穂の長さの測定の上で、その長さの順序に図書に各個離10cm間隔に移植した。

3. 結 果

（1）穂型の遺伝

A. 平・溢性及び穂の短・密性の遺伝：溢性×溢性、溢性×溢性のF₁は何れも溢性、溢性×溢性のF₁は溢性であった。溢性×溢性のF₂では溢性3：溢性1の比に分離した。又、溢性（或は溢性）の穂型×密穂のF₁は溢性もしくて無穂型の穂に類似し、F₂では穂型1：密穂1の比例に分離する事が認められた。故に、溢性・溢性及び穂の短・密性は共に1遺伝子組により決定され、溢性及び密穂は溢性及び密穂に対し共に優性である。今、溢性・溢性と澀Uz及uzu、穂の短・密性に対しLS及び1なる遺伝子を仮定する。

B. 平・溢性及び穂の短性及び穂の短・密性は、第1表aの知くに分離する。即ちUz、uzu及びL、1は互に独立的に遺伝することが判る。故、此等のF₂個體全くのF₂代遺伝を行い、F₂各個離の遺伝子組をしらべて結果は第2表aの知くであつて、此の結果は上述の仮定の正しけれを裏書する。

（2）雑種に於ける穂型及び若千の量的性質との関係

穂型は品種調査の結果に於ける種々の質的並びに量的諸性質の特徴に基づきして肉眼で観察されたが、以

* 昭和23年4月18日第79回講演会に於て発表
日本作物学会紀事第18巻第23～34頁
下における種類の区分を若干の量的形質の関係を種類世代について調査した。
A. 種類間関係及び特異点の関係：第 1 表 b 及び c は失って F2 における 4 種の種類を示す個體群の平均
種類間関係及び特異点であるが、この結果は L 群が最大、D 群が最小、他は中間であって、夫等の雑種群は
L, (M+M') 及び D 群より成る性質不連続的な三種曲線となる。
B. 芽殖の長さの関係：性階 X 芽殖の F1 の芽殖は、性階値のしれ近い長さを示す。交雑 1 及び 2 の
F2 表現型の芽殖長は第 1 表 d 及び第 1 置の知くであって、性階群の芽殖群の間に顕著な差異があり、その
曲線は強力不連続的である。命、性階及び芽殖群の夫々に於て著明性は芽殖群よりも常に芽殖が長いことを知
る。
C. 特異点の関係：F2 の 4 種特異点の長さは第 1 表 e の知くであって、此等の個體群の示す長さの差異
の状況は強力芽殖群の近様性を示している。
D. F3 遺伝子型について：F3 の結果明かにされた F2 の 9 種遺伝子型個體群の示す以上 4 つの量的形
質の平均値は第 2 表 b ～ e の知くであり、この結果によれば表現的に差のなさ遺伝子型間に極めて僅かな
がら長さの差が見られ、しかも個體遺伝子 Uzz 及び L をもっての表現型について外観の群がホモの群より
常に此等の凡ての表現型について長さが長いという一定の傾向のあることが認められる。
何、交雑 1 の F3 全系統の幼英除く 30 個體間の操作下で培養して芽殖群を測定し理論的に F3 に於ける
9 種遺伝子型の芽殖群を算出した結果は第 2 表 d ～ e の知くであって、d ～ 1 と全く同一の傾向の差異が各遺
伝子型間に存在することを知る。

4. 考察及結論
本実験から以下のが認められた。（1）種類の決定については 2 つの互に独立した刺立遺伝子 Uzz 及び L1
が主として関与する。（2）種類及び刺立種類間長、種類、芽殖の長さ及び芽殖等の間に密接な一定の関
係が存在する。そして、F2 における外観量的形質の現象状況は第 1、2 置に明らかにした本邦大麦に於ける品
種間差異の状況をかなり類似性の高いことが認められる。（3）此等量的形質に関与する「優性」遺伝子はその
刺立劣性遺伝に対して完全な優性ではない。

Table 1 : Segregation in the F3 generation for normal vs. "Uzz" form and for lax vs.
dense ear, and the mean lengths of some characters of the phenotypic groups.

<table>
<thead>
<tr>
<th>Item</th>
<th>Normal lax</th>
<th>Normal dense</th>
<th>"Uzz" lax</th>
<th>"Uzz" dense</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross No. 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obvsd. Nos.</td>
<td>225</td>
<td>68</td>
<td>56</td>
<td>20</td>
<td>369</td>
</tr>
<tr>
<td>Length of rachis internode</td>
<td>2.89±0.2066</td>
<td>1.88±0.1614</td>
<td>1.79±0.1971</td>
<td>1.31±0.1161</td>
<td></td>
</tr>
<tr>
<td>Ear length</td>
<td>77.4±9.19</td>
<td>53.3±6.62</td>
<td>49.9±7.83</td>
<td>38.1±5.63</td>
<td></td>
</tr>
<tr>
<td>Coleoptile length</td>
<td>34.0±3.25</td>
<td>30.8±3.25</td>
<td>16.8±1.40</td>
<td>15.8±0.99</td>
<td></td>
</tr>
<tr>
<td>Culm length(cm)</td>
<td>113.0±6.40</td>
<td>99.9±7.54</td>
<td>73.5±7.14</td>
<td>61.3±5.98</td>
<td></td>
</tr>
<tr>
<td>Cross No. 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obvsd. Nos.</td>
<td>101</td>
<td>44</td>
<td>35</td>
<td>12</td>
<td>192</td>
</tr>
<tr>
<td>Length of rachis internode</td>
<td>3.64±0.3115</td>
<td>2.46±0.2618</td>
<td>2.44±0.4128</td>
<td>1.60±0.2707</td>
<td></td>
</tr>
<tr>
<td>Ear length</td>
<td>85.9±7.33</td>
<td>61.3±4.86</td>
<td>58.9±5.64</td>
<td>42.0±4.33</td>
<td></td>
</tr>
<tr>
<td>Coleoptile length</td>
<td>33.8±4.35</td>
<td>28.6±3.73</td>
<td>17.9±2.30</td>
<td>15.4±2.02</td>
<td></td>
</tr>
<tr>
<td>Culm length(cm)</td>
<td>98.1±8.98</td>
<td>90.4±10.50</td>
<td>72.2±9.18</td>
<td>64.6±7.71</td>
<td></td>
</tr>
</tbody>
</table>

1) Compared with a calculated 9 : 3 ; 3 : 1 ratio • P=0.226 for Cross No. 1 and P=0.526 for No. 2.
2) Length unit mm, (except in the culm length.)

上述の（2）の現象の原因は種類遺伝子 Uzz 及び L1 の多面的様子によるものとして簡単明瞭に説明さ
5. 結果の育種的意義

本邦大麻育種に対する種型選抜子の重要性は第1、第2報及び本報の結果から直ちに理解される。而して、幼植株の特性中芽長さと成熟期の主要特性の関係を明らかにしたので以下に述べる如く、實際育種上極めて有利に應用得る。最近聞える氏は幼苗の培養により、性姦、全株性個體の苗床選抜の具體的例を報告してゐる。（1）「芽長法」は短・雌性及び雄の雌・雌性につき差のある品種間交雑の場合のみに利用される。（2）雌性（♀）×雌性（♀）のF1に於ける雌性個體の早期発見——雌性個體のみは短芽長を示すとえる。（3）雌性固定個體及び雌性個體の定位選抜——F2（或いはF3等）に於て芽長の最も短い部分に全體の1/4をさすれば雌の雌性、雄株では雌では簡単に対処得る。苗床選抜の方法は、苗床選抜の方法により選抜できる。（第16報）（4）芽長の順にF2等を栽培すれば同じ雄株群が比較的集って生じる故、苗床条件も兼用であり、又、観察上も便利である。（5）雌株及び雌株で全株性の定位選抜——雌株是有性個體中芽長の最も短い（或いは長い）部分に全株の1/4をさすれば、任意的に1/4値をなす場合に比し定位選抜で得る確率は50～65%、雌株性をなす確率は22～23%夫々高くなる。（第17報）（6）F3の定位固定選抜の苗床選抜——F3播種前の苗床時にF2選抜個體の苗子の一部を以て幼植株試験を行えば、定位固定（全株の1/4）のみは全株性雌性苗株なり、ヘテロ系統を選抜する事能である。

Table 2: Number of plants of F2 genotypes (a) as determined by the F3 segregation, and the mean lengths of rachis internode (b), ear (e), coleoptile (d) and of culm (e) for each genotype in the F3 generation.

<table>
<thead>
<tr>
<th>Genotype Expected ratio</th>
<th>UzUzLL</th>
<th>UzUzL1</th>
<th>UzuzLL</th>
<th>UzuzL1</th>
<th>UzUzll</th>
<th>uzuzLL</th>
<th>uzuzLL</th>
<th>uzuzL1</th>
<th>uzuzl1</th>
</tr>
</thead>
<tbody>
<tr>
<td>UzUzLL 1</td>
<td>27</td>
<td>27</td>
<td>45</td>
<td>103</td>
<td>24</td>
<td>44</td>
<td>17</td>
<td>39</td>
<td>20</td>
</tr>
<tr>
<td>UzUzL1 2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>UzuzLL 3</td>
<td>5.0</td>
<td>5.0</td>
<td>1.0</td>
<td>1.0</td>
<td>5.0</td>
<td>5.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>UzuzL1 4</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>UzUzll 5</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>UzuzLL 6</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>UzuzLL 7</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>UzuzLL 8</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>UzuzLL 9</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

1) P value for cross No. 1 and No. 3 were 0.701 and 0.642 respectively
2) (d-1) is the mean lengths of coleoptile for F3 genotypes and (d-2) is the expected genotypes theoretically calculated from F3 data.
Japanese barley varieties are classified into four main ear-types, and also that these ear-types differ each other as to various quantitative characters of young and adult plants. This paper dealt with the results on their genetical behaviors in the hybrids.

1. It was proved that two pairs of independently inherited genes, Uz-uz and L-1, were chiefly concerned with the determination of these ear-types.

2. As expected from the previous studies, marked differences in the coleoptile and culm lengths as well as in the lengths of ear and rachis-internode were recognized among the F2 phenotypes with different combination of Uz, uz and L, l genes. These phenomena were here explained as the pleiotropisms of these genes.

3. The quantitative effects of the “dominant” genes, Uz and L, over the “recessive” uz and l proved to be somewhat incomplete, although the degree of incompleteness was unnoticeably slight.

4. It was pointed out that the “coleoptile method” would serve to facilitate the breeding procedure of Japanese barley improvement, because some important characters of adult plants, such as ear-types, culm length, geographical adaptability and etc., could be predicted by the coleoptile length in their seedling stages.