水稲の葉形に及ぼす肥料3要素の影響

*森田潔

(茨城農試種試験場)

Effect of the three factors of fertilizers on the figure of rice-leaves, K. Morita

はしがき

水稲の品種は多数あると言われているが、これ等品種の葉形についてみると、葉が短くて広いものは、狭いもの、葉が短くて中の広いものは、狭いもの、この中間のものが多々離多である。勿論葉形は品種の遺伝的特性であるが、1品種についてはその稲作如何で相当変異すると考えられる。

筆者は昭和22年茨城県農試種試験場において、播下に相当広く栽培されている無芒稲囲における葉形の中、特に肥骨3要素、窒素、鈷酸、カリの欠乏が葉の形態、特に葉片の長さ、巾及び葉脈の長さにどんな影響をあたえるかを知るため研究を行った。その成績の大要を報告する。

本実験の施行には高野渡手、故野口渡手、高田研究室の助手を受けた。ここに記し感謝の意を表する。

I 試験方法

試験区としては無肥料区、無鈷酸区、無カリ区、無肥骨区、3要素栽培区の5区を設けた。1区1区4マネルパット計5個、これに水田における肥骨3要素試験区（数年間副耕試験中）の各々相当区の作土をつめ、N、P_{2}O_{5}、K_{2}O を1％以下。鈷酸アンモニア、鈷酸鈷石灰及び鈷酸カリにて全量基肥として、表面下約3寸の土に混じった。品種は無芒稲囲を用い、苗代に5月25日に播種、7月3日に主苗葉5枚目が成立、試験せる苗を1パットにつき3株、1株1本植（深さ1寸）とした。調査は個々の主苗葉につき、その出現毎に月日を記録し、充分伸びきった時葉脈長（葉を束巻いている部分で表裏より葉片との縁までの長さ）葉脈の長さ及び巾（最も広い部分）を測定した。

II 試験成績

1. 肥料3要素と主苗葉及び出穂期 第1表に3要素と主苗葉出現状況（午前10時調査において第N葉が第M葉の葉脈上に伸長した時を第N葉の出現とした）及び出穂調査の結果を示した。

<table>
<thead>
<tr>
<th>試験区</th>
<th>6月</th>
<th>7月</th>
<th>8月</th>
<th>9月</th>
<th>10月</th>
<th>11月</th>
<th>12月</th>
<th>13月</th>
<th>14月</th>
<th>15月</th>
</tr>
</thead>
<tbody>
<tr>
<td>無肥料区</td>
<td>7.5</td>
<td>13.3</td>
<td>19.6</td>
<td>22.9</td>
<td>26.8</td>
<td>8.25</td>
<td>9.6</td>
<td>15.1</td>
<td>19.9</td>
<td>-</td>
</tr>
<tr>
<td>無鈷酸区</td>
<td>6.0</td>
<td>13.3</td>
<td>20.0</td>
<td>21.6</td>
<td>26.3</td>
<td>2.6</td>
<td>9.9</td>
<td>15.5</td>
<td>20.4</td>
<td>-</td>
</tr>
<tr>
<td>無カリ区</td>
<td>4.0</td>
<td>13.8</td>
<td>19.2</td>
<td>22.0</td>
<td>27.0</td>
<td>1.8</td>
<td>8.8</td>
<td>16.2</td>
<td>20.3</td>
<td>23.7</td>
</tr>
<tr>
<td>無加里区</td>
<td>4.4</td>
<td>13.8</td>
<td>17.6</td>
<td>20.4</td>
<td>23.2</td>
<td>30.2</td>
<td>5.4</td>
<td>13.6</td>
<td>18.1</td>
<td>22.6</td>
</tr>
<tr>
<td>3要素区</td>
<td>4.4</td>
<td>13.5</td>
<td>19.3</td>
<td>21.1</td>
<td>24.4</td>
<td>30.6</td>
<td>6.7</td>
<td>13.8</td>
<td>18.9</td>
<td>22.6</td>
</tr>
</tbody>
</table>

* 昭和25年2月11日第86回講演会にて発表 同日受理

日本作物学会紀事 第20巻 第1〜2号

NII-Electronic Library Service
主稲葉の出現は無肥斜区と無窒素区は相関し、標準の3要素区に比較し播種後6枚目出現が遅れ、10枚目から更に遅れ、主稲葉14枚で止葉となり1枚少ない。無窒酸区は無窒素区に次いで10枚目頃から明らかに遅れ、無加里区は止葉＝主稲葉15枚の出現は遅いが、それまでに却って促進されている。

出穂期は主稲葉出現と穂が相関している。無肥斜区が最も早く8月26日、無窒素区はこれより1日遅れている。何れも標準区より早いのは主稲葉が1枚少ないためである。無加里区は標準区より1日遅れ、無窒酸区は対日に1日遅れている。晚発したためか、相互間の出穂期の開きが著外少ない。

2. 肥料3要素と穂形長 標準の3要素区に比較し無肥斜区、無窒素区は明かに短い。主稲葉13、14枚で長いのは14枚目で止葉になっているためである。無窒酸区は僅少ではあるが無肥斜区より長い。無窒素区は主稲葉9枚目になれば明かに標準区より長い。これらの傾向はその後の主稲葉においても認められ、主稲葉14、15枚（止葉）では急激に伸長している。無加里区は対日に9枚目頃から無窒酸区は勿論、標準3要素区よりも短い。

第2表 3要素と主稲葉における穂形長

<table>
<thead>
<tr>
<th>訓若 対照</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>無肥斜区</td>
<td>10.3</td>
<td>11.9</td>
<td>13.4</td>
<td>18.3</td>
<td>22.4</td>
<td>25.5</td>
<td>30.0</td>
<td>44.1</td>
<td>71.6</td>
<td>-</td>
</tr>
<tr>
<td>無窒素区</td>
<td>11.5</td>
<td>12.0</td>
<td>13.7</td>
<td>18.1</td>
<td>22.8</td>
<td>25.7</td>
<td>30.7</td>
<td>46.0</td>
<td>71.9</td>
<td>-</td>
</tr>
<tr>
<td>無窒酸区</td>
<td>12.0</td>
<td>13.0</td>
<td>13.7</td>
<td>19.1</td>
<td>24.8</td>
<td>29.9</td>
<td>33.8</td>
<td>40.3</td>
<td>58.1</td>
<td>85.8</td>
</tr>
<tr>
<td>無加里区</td>
<td>12.8</td>
<td>13.5</td>
<td>13.6</td>
<td>17.2</td>
<td>23.6</td>
<td>26.9</td>
<td>29.3</td>
<td>36.8</td>
<td>53.9</td>
<td>81.4</td>
</tr>
<tr>
<td>3要素区</td>
<td>12.5</td>
<td>13.6</td>
<td>13.9</td>
<td>18.0</td>
<td>24.9</td>
<td>29.6</td>
<td>32.9</td>
<td>39.0</td>
<td>55.8</td>
<td>82.4</td>
</tr>
</tbody>
</table>

3. 肥料3要素と葉片長 止葉の長さは各区間に明確な差がない。標準区と無肥斜区が極めて僅かに長い傾向があるが長さの極端化は1cm余りすぎない。止葉を基準にすればこれより4番目の葉が無肥斜区、無窒酸区は主稲葉11枚目、その他は主稲葉12枚目）最も長い点は各区共一致している。無窒酸区は止葉を除き主稲の

第3表 3要素と主稲葉における葉片長

<table>
<thead>
<tr>
<th>訓若 対照</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>無肥斜区</td>
<td>22.2</td>
<td>29.3</td>
<td>31.1</td>
<td>35.1</td>
<td>37.9</td>
<td>49.3</td>
<td>46.4</td>
<td>39.1</td>
<td>29.3</td>
<td>-</td>
</tr>
<tr>
<td>無窒素区</td>
<td>23.0</td>
<td>29.6</td>
<td>34.6</td>
<td>33.6</td>
<td>43.2</td>
<td>49.6</td>
<td>46.8</td>
<td>39.1</td>
<td>28.7</td>
<td>-</td>
</tr>
<tr>
<td>無窒酸区</td>
<td>25.9</td>
<td>31.7</td>
<td>36.1</td>
<td>36.9</td>
<td>48.3</td>
<td>60.7</td>
<td>60.7</td>
<td>65.8</td>
<td>59.5</td>
<td>44.7</td>
</tr>
<tr>
<td>無加里区</td>
<td>25.6</td>
<td>33.0</td>
<td>34.8</td>
<td>32.8</td>
<td>43.1</td>
<td>55.8</td>
<td>57.7</td>
<td>52.3</td>
<td>37.9</td>
<td>28.3</td>
</tr>
<tr>
<td>3要素区</td>
<td>26.0</td>
<td>32.7</td>
<td>34.8</td>
<td>34.6</td>
<td>44.8</td>
<td>59.5</td>
<td>63.5</td>
<td>63.5</td>
<td>56.1</td>
<td>42.4</td>
</tr>
</tbody>
</table>

各葉共最も短く、次が無肥斜区よりは極分長方形。標準区に比較し無窒酸、無加里区の差が認められるのは主稲葉9枚目頃から14枚目（止葉の一つ前）までで、無窒酸区は標準区より長く、無加里区は対日に短い。この中13番葉目から主稲葉数3番目の葉において、この差が最も顕著である。

4. 肥料3要素と葉片、播種後最初の主稲葉=6枚目における葉片長、一番狭く止葉が最も大きい点は各区共
一致している。止葉についてはホクベクス、3栄養区、無加里区、無害害区、無病害区の順に広い。無病害区、無加里区、無害害区、の順に葉数が少ないものは止葉より数えて第3葉まで若干に認められる。無加里区と無病害区

<table>
<thead>
<tr>
<th>主導薬葉</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>無肥料区</td>
<td>0.66</td>
<td>0.84</td>
<td>0.90</td>
<td>0.94</td>
<td>0.95</td>
<td>1.05</td>
<td>1.06</td>
<td>1.16</td>
<td>1.29</td>
<td>-</td>
</tr>
<tr>
<td>無 病 害 区</td>
<td>0.63</td>
<td>0.93</td>
<td>0.97</td>
<td>1.01</td>
<td>0.97</td>
<td>1.03</td>
<td>0.99</td>
<td>1.10</td>
<td>1.31</td>
<td>-</td>
</tr>
<tr>
<td>無 病 害 区</td>
<td>0.60</td>
<td>0.92</td>
<td>0.92</td>
<td>1.00</td>
<td>1.00</td>
<td>1.20</td>
<td>1.25</td>
<td>1.16</td>
<td>1.35</td>
<td>1.47</td>
</tr>
<tr>
<td>無 加 里 区</td>
<td>0.64</td>
<td>1.00</td>
<td>0.96</td>
<td>1.10</td>
<td>1.06</td>
<td>1.16</td>
<td>1.26</td>
<td>1.06</td>
<td>1.22</td>
<td>1.40</td>
</tr>
<tr>
<td>3 要 素 区</td>
<td>0.61</td>
<td>0.98</td>
<td>1.00</td>
<td>1.08</td>
<td>1.09</td>
<td>1.15</td>
<td>1.30</td>
<td>1.23</td>
<td>1.31</td>
<td>1.46</td>
</tr>
</tbody>
</table>

区を比較すると、前者は分収期間間も主導葉10枚目までは広く、その後は無病害区が広くなっている。この点は更に試験して確かめた。

5. 肥料3要素と主導における葉片長対葉長の比率

葉片に対する葉長の長さの関係を知るため、葉片の長さを葉長の長さで除した数値を示したものが第5表である。この比率は各区間に大差なく同一の傾向が見られる。止葉－第1葉は0.3～0.4、第2葉が0.7～0.9で

<table>
<thead>
<tr>
<th>主導薬葉</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>無肥料区</td>
<td>2.2</td>
<td>2.5</td>
<td>2.3</td>
<td>1.9</td>
<td>1.7</td>
<td>1.9</td>
<td>1.5</td>
<td>0.9</td>
<td>0.4</td>
<td>-</td>
</tr>
<tr>
<td>無 病 害 区</td>
<td>2.0</td>
<td>2.5</td>
<td>2.6</td>
<td>1.9</td>
<td>1.9</td>
<td>1.9</td>
<td>1.5</td>
<td>0.9</td>
<td>0.4</td>
<td>-</td>
</tr>
<tr>
<td>無 病 害 区</td>
<td>2.2</td>
<td>2.3</td>
<td>2.6</td>
<td>1.9</td>
<td>1.9</td>
<td>2.0</td>
<td>1.9</td>
<td>1.5</td>
<td>0.8</td>
<td>0.3</td>
</tr>
<tr>
<td>無 加 里 区</td>
<td>2.0</td>
<td>2.4</td>
<td>2.6</td>
<td>1.9</td>
<td>1.8</td>
<td>2.0</td>
<td>2.0</td>
<td>1.4</td>
<td>0.7</td>
<td>0.3</td>
</tr>
<tr>
<td>3 要 素 区</td>
<td>2.1</td>
<td>2.4</td>
<td>2.5</td>
<td>1.9</td>
<td>1.8</td>
<td>2.0</td>
<td>1.9</td>
<td>1.4</td>
<td>0.8</td>
<td>0.4</td>
</tr>
</tbody>
</table>

葉片の長さ葉長より短く、第3葉が1.4～1.5で葉片が長くなり、第4葉は1.9～2.0で更に長く2倍になっている。この比率をより上から第4葉までは何葉があるかを正確に求めるであろう。更に主導薬の順位と葉片長は集団の何葉が長さを知れば、これに対する大々の長さを大体推定できることになる。

2. 結

止葉より数えて第4番目の葉（葉片+葉長）が最も長く、これを次第3葉において、肥料3要素欠乏による葉長の差が最も著しい、その時期は出穂期の約2週間前（穂育期の初期、成熟分収期に相当する）であるが、概ねこの時期に茨城県下各地の調査欠陥水田地帯を観察して、特に品種が共に葉が著しく葉長に感ずされることが、良い一致した成績が得られた。第3葉における葉長を図示したのが第1図である。窒素、礆酸及び加黑何れも豊富にある場合に比し、最も短小のが調査成因に欠欠した場合で、栄養分を効果的に成長とされるためである。調査成因が欠乏すれば葉は長くなり、加黑成分が欠乏すれば調査の場合と反対に短くなっている。

この成績により共に同一品種における葉形の比較により蓄地せられた水田の肥料成分の特性の要因を知る一つの方法となる場合もあるだろう。

Résumé

It was apparent that change of the leaf-length was largest at the third leaf from the last leaf of main stem, when the deficiency element (nitrogen, phosphoric acid or potassium) in the soil was kept for all the stages after rice-planting.