馬鈴薯催芽の基礎的研究
第2報 催芽時におけるAmylaseの消長について*

荒井恒重郎（宇都宮大学学芸学部）

Fundamental study of germination of white potato
(2) Chemical variation of amylase during germination period
Kojuro Anai
(College of Liberal Arts and Education, Utsunomiya University)

I 緒言 さきに馬鴨薯催芽の基礎的研究第1報において催芽時における炭化水素の消長を明らかにし、剝皮処理における短時日の催芽については、内容糖成分特に澱粉の著しい分解減少と直結関係及び非還元糖の増加現象との間に大いに関係のあることを報告した。今回は続いて催芽時におけるAmylaseの消長について明らかにすることに報告する。本研究を実施するに当たり、特に御援助を賜った西川博士、奥野博士並びに茂野、桜井両氏に対し謹謝を表する。

II 実験材料並びに方法 1. 催芽 供試品種に男爵紅丸を選び各々1粒宛昭和27年3月25日に種蒔し、同じ管理のもとに8月21日に収穫し催芽させて実験に供した。前回に同様催芽床を作つて各品種1個70g内外の量を選び、標準、剝皮、エチクロリリンの3区に分け、各品種半切200個体橘9区で計120個体の試料を得た。上述標準区は半切、剝皮区は剝皮後半切、エチクロリリン区は水洗前日に吸水半切してエチクロリリン6%液に浸し、取り出してから薬を適に1昼夜密閉後他の2区と同時に水洗した。催芽中は箱の生育を測定し、気温、温度、発芽歩合、腐敗歩合等を調査した。2. 酵素試料 男爵、紅丸の2品種について標準区剝皮区エチクロリリン区の6区毎に、水洗後の経過日数によって9回（1、3、5、8、10、13、15、18、20日）の試料を半切2個体宛てで採取し、生体重70gを体重として後、大根おろし器で細切してからガラス製4枚で煮沸し、残渣をよく洗浄して全液を一定量（100cc）にしこれを供試液とした。3. Amylaseの測定法 Amylase作用の発現後における糖濃度を以てAmylase力をとる。Amylase作用の測定を決定するために予備実験を行い6時間後における糖濃度を測定した。

(1) 供試液10ccを採りBSESTRAND氏の方法によって還元糖をglucoseとして定量分析を行つた。
(2) 供試液 5cc を採りこれに 2％可溶性酸化液 25cc を加え、懸続液を 10cc を注入して pH 5.8 を保ち、蒸留水 10cc を加え更にトルオール 0.5cc を加えた。これを 50℃の水温器中に 6時間入れた後 10cc を採って Bertrand 氏法により還元糖を glucose として定量分析した。(2) より (1) を引いて、これを Amylase 量とした。

III 実験結果並びに考察 1. 同種間の催芽時における Amylase の消長 (1) 男爵の催芽時における Amylase の消長 標準切皮エチクロリシンの各区における Amylase 消長の結果は第 1 表及び第 1 図の通りで

<table>
<thead>
<tr>
<th>No.</th>
<th>嫁接日数</th>
<th>男爵</th>
<th>切皮区</th>
<th>エチクロリシン区</th>
<th>紅丸</th>
<th>切皮区</th>
<th>エチクロリシン区</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>7.32</td>
<td>7.32</td>
<td>7.32</td>
<td>11.49</td>
<td>11.49</td>
<td>11.49</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>14.46</td>
<td>19.32</td>
<td>20.05</td>
<td>16.42</td>
<td>21.36</td>
<td>20.89</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>16.26</td>
<td>18.35</td>
<td>17.55</td>
<td>15.53</td>
<td>22.32</td>
<td>18.68</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>13.15</td>
<td>17.17</td>
<td>16.86</td>
<td>14.89</td>
<td>15.84</td>
<td>17.68</td>
</tr>
<tr>
<td>6</td>
<td>13</td>
<td>9.96</td>
<td>14.15</td>
<td>16.34</td>
<td>12.91</td>
<td>15.45</td>
<td>17.91</td>
</tr>
<tr>
<td>7</td>
<td>15</td>
<td>12.84</td>
<td>14.67</td>
<td>10.69</td>
<td>12.87</td>
<td>10.65</td>
<td>12.55</td>
</tr>
<tr>
<td>8</td>
<td>18</td>
<td>13.53</td>
<td>14.06</td>
<td>10.17</td>
<td>11.34</td>
<td>9.24</td>
<td>11.42</td>
</tr>
<tr>
<td>9</td>
<td>20</td>
<td>8.24</td>
<td>9.39</td>
<td>7.51</td>
<td>9.49</td>
<td>3.75</td>
<td>6.94</td>
</tr>
</tbody>
</table>

第 2 表 異種間的催芽時における Amylase の消長 生体重 18当日及び 6時間後における糖量 (glucose, mg)

<table>
<thead>
<tr>
<th>No.</th>
<th>嫁接日数</th>
<th>標準区</th>
<th>切皮区</th>
<th>エチクロリシン区</th>
<th>男爵</th>
<th>紅丸</th>
<th>切皮区</th>
<th>エチクロリシン区</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>7.32</td>
<td>11.49</td>
<td>7.32</td>
<td>11.49</td>
<td>7.32</td>
<td>11.49</td>
<td>7.32</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>14.46</td>
<td>19.32</td>
<td>20.05</td>
<td>16.42</td>
<td>21.36</td>
<td>20.89</td>
<td>20.35</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>16.26</td>
<td>15.53</td>
<td>18.35</td>
<td>22.32</td>
<td>17.55</td>
<td>18.68</td>
<td>18.68</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>13.15</td>
<td>14.89</td>
<td>17.17</td>
<td>15.84</td>
<td>16.86</td>
<td>17.91</td>
<td>16.86</td>
</tr>
<tr>
<td>6</td>
<td>13</td>
<td>9.96</td>
<td>12.91</td>
<td>14.15</td>
<td>15.45</td>
<td>16.34</td>
<td>17.91</td>
<td>16.34</td>
</tr>
<tr>
<td>7</td>
<td>15</td>
<td>12.84</td>
<td>12.87</td>
<td>14.63</td>
<td>10.65</td>
<td>10.69</td>
<td>12.55</td>
<td>12.55</td>
</tr>
<tr>
<td>8</td>
<td>18</td>
<td>13.53</td>
<td>11.54</td>
<td>14.06</td>
<td>9.25</td>
<td>10.17</td>
<td>11.42</td>
<td>10.17</td>
</tr>
<tr>
<td>9</td>
<td>20</td>
<td>8.24</td>
<td>9.49</td>
<td>7.51</td>
<td>3.73</td>
<td>7.51</td>
<td>6.94</td>
<td>6.94</td>
</tr>
</tbody>
</table>

ある。即ち Amylase 量は標準区に多く切皮エチクロリシン区に多い。各区共に伏込 4日後より増大して 6日後に最高となり以後漸次減少する。Amylase 量の最多に芽の伸長とは伏込後 10日頃まで各区ともに相平行し、20日後の芽の伸長は Amylase 量の減少著しいエチクロリシン区が最も良好である。(2) 紅丸の催芽時における Amylase の消長 結果は第 1 表及び第 2 図の通りである。即ち標準区に多く切皮区エチクロリシン区に多い点は男爵と同様である。なお伏込 3日後で増大して 5日後に最高となり以後急激な減少を示す。Amylase 量の最多に芽の伸長とは伏込 13日後まで平行し、20日後における芽の伸長は Amylase 量の急速著しい切皮区が最も良好である。

2. 異種間の催芽時における Amylase の消長 結果は第 2 表及び第 3 図の通りである。即ち男爵紅丸の 3区における Amylase 量は各区共に伏込 3日後より増大して 5日後に最高となり紅丸に多い。この傾向は 3区中エチクロリシン区が個大である。以後急激傾向を示し、20日後における芽の伸長は Amylase 量の急速著しい切皮区紅丸が最も良好である。

これを要するに催芽については、その初期に Amylase 量の增大が考えられ、特に伏込 10日後以降の Amylase 作用は催芽促進に極めて著しい影響を及ぼすものと考察される。その後 Amylase 量が急激に減少する傾向を示しているのに反して、芽は速やかに伸長するが、10日以後における芽の伸長は他の因子が更に深く関係するためと考えられる。

（附記）支部省科学研究費によって一部である。

（参考文献省略）
Summary 1. The amount of amylase produced in seed potatoes at the germination period was studied. Two varieties of white potato, Danshaku and Benimaru were used as experimental materials.

2. As to the variations in the amount of amylase at the period measured in each of the varieties:

(1) The amount was smaller in the control plot compared with those in the peeled potatoes and ethylen-chlorhydrin treatment plots. In each of those plots, amylase increased from the 3rd day after planting, and it reached maximum on the 5th day, decreasing after that date. The relation between the amount of amylase produced and the growth of buds was as follows: Until the 10th day from the date of planting, differences in the growth rates of buds among the plots were not distinct, but, since the 20th day, the difference became clearer and the growth of buds in the ethylen chlorhydrin plot predominated, where amylase decreased distinctly.

(2) Relations in amylase amount of the three plots of the variety Benimaru, was the same in tendency as that in the plots of Danshaku; namely, until the 13th day, after planting the difference in growth rate of bud among 3 plots were not distinct. Since the 20th day, however, the growth rate was greatest in the peeled plot where the production of amylase became to decrease.

3. The difference between two varieties: The amounts of amylase produced in Danshaku and Benimaru respectively in each treatment plot began to increase gradually after the 3rd day from the date of planting, and reached their maxima on the 5th day being greater in Benimaru than in Danshaku, and in both the two varieties production of amylase was greater in the ethylen plots. Since the 5th day distinct decreasing tendency of the amount was remarked in each plot. Since the 20th day the rate of growth of buds was best in the peeled Benimaru plot where the production of amylase was seen rapidly to decrease.

It was considered in general that the amount of amylase increased from the beginning of bud germination of the seed potatoes and that, until the 10th day, the germination was affected by its presence. On the 10th day and afterwards the amount of amylase decreased rapidly while the buds showed high growth rates.

It should be considered on the other hand that the bud growth in the latter part of the period might probably be affected by many factors other than amylase production.