水稲根の細胞分裂及び伸長に及ぼす温度の影響

山川 寛・岸川 英利
（佐賀大学農学部）

水稲根の伸長に関与する根端細胞の分裂と細胞伸長に対する温度の影響を知るために実験を行った。本報を含むに当り水稲土壌の設けた御校閑を含めたことに対し敬意を表する。

実験材料及び方法
ウスブルム様液にて消毒した農株 18 号を耕す。30℃の恒温器にとっ24時間後、次いで飼料に適し、かつ発芽状態の均一なものを選ぶ。その後の温度処理及び一定時間後の材料採取に便利な、1回の材料採取を単位として、1次に蒸留水を注加したシャーレに発芽種子を移し、25℃の恒温器中、20時間後、種子根長約 3 mm、種子根長約 10 mm に伸長をしたものを 45、40、35、30、25、20 及び 15℃の恒温器に移し、暗黒下において生長させた。その後 2 時間間隔に 12 回に亘り種子根根端を採取し、Nauvin s fluid にて固定し、常法に従ってパラフィンに埋蔵して 10 μ の厚さの横断及び縦断切片を作り、Heidenhains iron-alum haematoxylinにて染色し、永久プレパラートを作製して観察した。細胞分裂については、縦断切片について、前期から終期までの核分裂像を含む細胞を分裂細胞として、それぞれの根端に含まれるかかれる状態の全細胞の数を調査した。細胞長は根の先端（根冠を除く）から約 4 mm 部位の皮層の中央部の細胞の長径を縦断切片について測定した。調査にあたる所見を参考とした。

実験結果及び考察
根端細胞分裂と温度との関係を見ると第 1 図の如く、25℃において細胞分裂が最も旺盛で、それより温度が低下するにつれて細胞分裂は減少を示した。処理温度が 45℃の加温と高湿になると分裂中の細胞はほとんどなく、細胞質の空胞化と核の変形が見られ、かかる変化は処理温度の 2 時間目の材料において、すでに表皮及び皮層細胞の細胞質の空胞化が認められた。またこの実験とほぼ同様な方法によって他の実験の 38℃処理の根端において、分裂中の細胞が極く僅か認められたので、根端細胞分裂の細胞分裂限界温度は 38℃附近にあるものと考えられる。

次に根端細胞分裂の日変化を見ると第 2 図の如く観察的（平均値）には 10 時及び 22 時頃に分裂細胞数の極大を示す時期があり、さ
On the Effect of Temperature upon the Division and Elongation of Cells in the Root of Rice Plant

Yutaka Yamakawa and Hidetoshi Kishikawa
(Faculty of Agriculture, Saga University)

Summary

Experiments were carried out to investigate the effect of temperature upon the division and elongation of cells in the seminal root of rice plant.

The results obtained are as follows:

1) We could find no dividing cells in the root tips of the seedling kept under 40°C and 43°C, as results of changes in protoplasm: vacuolation of cytoplasm, deformation of nucleolus and others. Under 25°C treatment, the intensity of cell division was most flourishing. The number of dividing cells decreased in proportion to the decline from 25°C as in Fig. 1.

2) The primary maxima of the frequency of cell division occurred at 10 A.M. and 10 P.M. with the smaller secondary maxima at 4 A.M. and 6 P.M., and this periodicity proceeded in a similar rhythmic fashion without distinction of difference of temperatures as to be seen in Fig. 2.

3) The degree of the elongation of cortical cells were most conspicuous under 30°C treatment, and those cells were shortened according as temperature rose or fell from that point. Furthermore, we recognized that the effect of temperature on the elongation of the root was almost the same as the results obtained in the elongation of cortical cells above mentioned.

4) As the optimum temperature for cell division differed from that for cell elongation in root tip, it may be considered that in accordance with changes of temperature the inner morphological state of roots became unlike, even if the growth of roots was same.