香料ゼラニュウムの精油分泌機能に関する生理・生態学的研究

吉田 照雄
（愛媛県立伯方高等学校）

第3報 腸間分布密度及び収油率の時期的変化

緒言 細胞は先に香料ゼラニュウムの三種（*P. roseum*, *P. denticulatum*, *P. radula*)を用い油溝を含有する組織として腺盤，毛管及び胞葉組織を認め（玉井・吉田 1955），それらの油溝の顕微化学的性質を調べ（玉井・吉田・赤松 1956，吉田 1957），更に精油分泌線として最も大切の腺盤の分布特性を調べ（吉田 1957），収油率と腺間分布密度の間には高い正の相関のあることを指摘した（吉田 1957）。そこで今回は腺間分布密度及び収油率の季節的な変化を調べ，精油分泌線の高くなる時期を明らかにし収油適期を知る上に役立てた。本実験を行うに当たりは愛媛大学農学部玉井虎太郎博士の懸命な御指導を受けて，吉田香料株式会社には研究上種々便宜を与えて頂いた。又費用の一部は文部省研究助成金によった。併せて深謝の意を表する。

実験方法 標準栽培法による *P. roseum* Willd. の 2 年株を供試し 1956 年～1957 年にわたり試験した。精油は主として葉身に含有され，茎・葉柄には殆ど含まれていない。従って原料の構成状態により収油率は非常に変化する。又花蕾にも精油は含有されるが収穫量が僅かであるので全体的にはあまり問題にならない。そこで葉位，葉重量を規律した均一な葉身のみの原料（先端から第 V 葉位まで）を用い，腺間分布密度及び収油率の季節的変化を葉位別に調べ，更に茎・葉の混合した原料の収油率の季節的変化をもあわせて調査した。腺間分布密度の検定には葉身の葉柄中央部の変皮を剝離し一定面積内（0.872 mm²）の腺間分布数を 20 視野につき検録し，その平均値を求め分分布密度とした。収油率の測定には重量分布密度装置及び 10 kg 蒸溜器を用い，午後 3 時に原料を採取し，生蒸溜しを行い，3 回の測定値の平均値を求めた（vol/wt %）。

結果及び考察

1) 葉位別腺間分布密度及び収油率の時期的変化 第 1、2 図に示す如く両者共類似した季節的変化が認められる。即も 8 月初旬から次第に増加し，8 月頃最高を示し，9 月にやや低下し，10 月頃再びやや高くなり，11 月をすずると急激に低下していく傾向がある。その年の気象状態により多少の差ははあるが腺間分布密度及び収油率の年変化には二つの波がある様に思わわれる。収油率の高くなる時期では乾燥油の収油率の増加が下葉位に著しくなっているのが特徴である。又一般に 1956 年は 1956 年に比べ収油率がやや低い様である。気象要素（気温・日照量・湿度）が密接な関係を持つものと考えているがこの点は今後検討中である。

2) 混合原料の収油率の時期的変化 茎・葉の混合した原料の収油率（10 kg 蒸溜器による）も各葉位の混合した葉身のみの原料の収油率（微量油分密度装置による）も同様な季節的変化を示した。第 1 表はその結果の一

* * *
昭和 33 年 2 月 1 日 第 118 回講演会に於て発表
Table 1. Seasonal fluctuation in the percentage yield of oil.

<table>
<thead>
<tr>
<th>Date</th>
<th>Leaf-blades (microstill)</th>
<th>Leaves and stalks (10% kilo type still)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1956</td>
<td></td>
<td></td>
</tr>
<tr>
<td>June</td>
<td>0.160</td>
<td>0.081</td>
</tr>
<tr>
<td>July</td>
<td>0.200</td>
<td>0.105</td>
</tr>
<tr>
<td>Aug.</td>
<td>0.283</td>
<td>0.128</td>
</tr>
<tr>
<td>Sept.</td>
<td>0.245</td>
<td>0.079</td>
</tr>
<tr>
<td>Oct.</td>
<td>0.275</td>
<td>0.114</td>
</tr>
<tr>
<td>Nov.</td>
<td>0.160</td>
<td>0.070</td>
</tr>
<tr>
<td>1957</td>
<td></td>
<td></td>
</tr>
<tr>
<td>June</td>
<td>0.117</td>
<td>0.080</td>
</tr>
<tr>
<td>July</td>
<td>0.159</td>
<td>0.080</td>
</tr>
<tr>
<td>Aug.</td>
<td>0.263</td>
<td>0.193</td>
</tr>
<tr>
<td>Sept.</td>
<td>0.179</td>
<td>0.097</td>
</tr>
<tr>
<td>Oct.</td>
<td>0.221</td>
<td>0.110</td>
</tr>
<tr>
<td>Nov.</td>
<td>0.152</td>
<td>0.076</td>
</tr>
</tbody>
</table>

Fig. 3. Seasonal fluctuation in the correlation between the number of oil glands per unit area and the percentage yield of oil.

第4報 収油率の日変化について**

第3報で腺部分布密度及び収油率の季節的变化を報告したが、更に収油率の日変化があるか否か検討した結果、かなり顕著な日変化を認めめた。これはその季節的变化と共に脂油分泌腺を明らかにする上にも、原料の収油率の向上をはかる上にも役立つものと思われる。

実験方法 P. roseum Wild. の1、2年株を供試し葉位及び葉重量を規定した均一な原料（先端から第4葉位迄の葉のみ）を用い収油率を午前7時、午後1時、午後6時で測定すると共に午前及び午後の植物体内水分含がを調べ、更に気温、湿度及び日射量（ロビッチ型自記日射計による）を測定した。9月～11月（1957）にわたり試験し日射を未だ受けない午前と一日の日射量の満足された午後の収油率の比較を行い、更に昼天や晴天時の収油率の日変化の様子を調べて見た。収油率の測定には微量分析装置を用い3回の測定の平均値で表わした（vol/wt%）。

結果 第1表及び第1図に示す如く、一般に収油率には日変化が認められ、午前は収油率が低く午後は増加してくる傾向がある。収油率の増加する割合は主として日射量及び気温に支配されている。日射量の殆どない旧歴、雨天時には午前と午後の収油率の変化は殆ど認められない。気温の比較的高い時には収油率も高く、増加の割合も午前と午後とで差が著しく、気温が低下してくると収油率の著しい増加が認められる様である。又温度は低い方が収油率の増加に好適である。植物体内水分含が太陽状態より多く異なるが午前と午後とで5～6％程度の差があるにすぎないので、かなり収油率の日変化が現実するものと思われる。又日射を未だ受けない午前の収油率は前日の午後の収油率に比べ低下したことも特徴である。