維管束の相互連絡から見た水稲茎葉の生育について

猪ノ坂 正之
（宮崎大学農学部）

水稲について維管束による茎葉相互間の連絡が茎葉の生育に対して如何なる関係をもつかを知るために、主稈各葉についてその葉身を隔てしきの影響が他の何れの葉枝に分離の生育に現れるかを調査した。

材料及び方法
水稲苗株の17号を供試し、2万分の1のサブネツ鉱に全量鉄肥として1鉱当たり筋安5g、過石3g、硫咜3gを施用した。4月17日に1鉱当たり10株宛選抜し第3葉（穂葉及び不完全葉を含まず）抽出初めに1鉱当たり生育の整った5株を残しそのを除去した。第5葉抽出初めに第4葉以下の葉身及び第1葉葉節の分離を除去し、下記の試験区により1区当たり3鉱、1鉱当たり5株を供試した。

A区：標準区 B区：第5葉削除区 C区：第5、第6葉削除区 D区：第5、第7葉削除区 E区：第5、第6、第7葉削除区 F区：第6、第7葉削除区 G区：第6、第7葉削除区 H区：第7葉削除区

削葉はその葉の抽出初めより伸長の終るまで抽出した葉身を毎日除去した。調査は主稈各葉については第N葉の抽葉長第N（N－1）葉の葉間隔より、また第N葉節分離の第1葉及び第2葉は第N葉の葉間隔よりこの長さを測った。

結果及び考察
1. 主稈出葉日 主稈各葉の出葉間隔を第1表に示した。第4葉～第6葉間隔及び第6葉～第7葉間隔では第4葉以下が隔てされているために第5葉残存の姿勢が強く現われている。第7葉～第8葉間隔ではこの時期の活動中心葉である第5葉及び第8葉と維管束によ

第1表 主稈出葉間隔

<table>
<thead>
<tr>
<th>第5～第6葉</th>
<th>第6～第7葉</th>
<th>第7～第8葉</th>
<th>N/M</th>
</tr>
</thead>
<tbody>
<tr>
<td>A区 4.0日</td>
<td>5.6日</td>
<td>4.6日</td>
<td>0.82</td>
</tr>
<tr>
<td>B区 5.2日</td>
<td>6.6日</td>
<td>4.1日</td>
<td>0.71</td>
</tr>
<tr>
<td>C区 5.1日</td>
<td>6.9日</td>
<td>4.8日</td>
<td>0.72</td>
</tr>
<tr>
<td>D区 5.0日</td>
<td>6.5日</td>
<td>4.4日</td>
<td>0.77</td>
</tr>
<tr>
<td>E区 5.0日</td>
<td>6.9日</td>
<td>5.7日</td>
<td>0.81</td>
</tr>
<tr>
<td>F区 4.3日</td>
<td>5.8日</td>
<td>4.8日</td>
<td>0.85</td>
</tr>
<tr>
<td>G区 4.5日</td>
<td>6.0日</td>
<td>5.8日</td>
<td>0.93</td>
</tr>
<tr>
<td>H区 4.2日</td>
<td>5.8日</td>
<td>5.0日</td>
<td>0.92</td>
</tr>
</tbody>
</table>

2. 主稈各葉の生育 各稈相互間の伸長の伸長比を第2表に示した。第6葉：第7葉；第6葉：第7葉；第6葉：第8葉の残存している各稈の伸長比が大きいか。第7葉：第6葉＝第5・7葉削除区第6葉削除区より第一と伸長比が大であるが他の各葉は何れも第7葉の残存している区が大きいか。これらの結果から第（N＋2）葉の伸長が第N葉の伸長時における活動中心葉であり、またこの葉が維管束による相互連絡の密な第N葉によって主として左右されると考えられる。

3. 分離葉の第1葉及び第2葉の発現 第3葉から各稈の分離葉の第1葉の発現歩合は、第4表に示したそれらの葉の出葉日にかかる分離葉令から見活動中心葉及びそれらの分離葉と維管束による相互連絡の密な葉の残存している各稈は増生が高く、また第2葉の発現歩合も顕著を示して高くなっている。

* 昭和34年12月5日 第125回講演会に於て発表

第2表 各葉の伸長比

<table>
<thead>
<tr>
<th>第6葉；第7葉；第8葉；第8葉；第9葉</th>
<th>抽葉</th>
<th>残存</th>
<th>残存</th>
</tr>
</thead>
<tbody>
<tr>
<td>A区 1:1.07</td>
<td>1:1.21</td>
<td>1:1.17</td>
<td></td>
</tr>
<tr>
<td>B区 1:0.98</td>
<td>1:1.18</td>
<td>1:1.20</td>
<td></td>
</tr>
<tr>
<td>C区 1:0.92</td>
<td>1:1.20</td>
<td>1:1.09</td>
<td></td>
</tr>
<tr>
<td>D区 1:1.15</td>
<td>1:1.13</td>
<td>1:1.07</td>
<td></td>
</tr>
<tr>
<td>E区 1:1.12</td>
<td>1:1.13</td>
<td>1:1.11</td>
<td></td>
</tr>
<tr>
<td>F区 1:1.17</td>
<td>1:1.16</td>
<td>1:1.12</td>
<td></td>
</tr>
<tr>
<td>G区 1:1.20</td>
<td>1:1.20</td>
<td>1:1.20</td>
<td></td>
</tr>
<tr>
<td>H区 1:1.09</td>
<td>1:1.07</td>
<td>1:1.07</td>
<td></td>
</tr>
</tbody>
</table>
On the Growth of Leaves and Tillers in Rice Plant in Relation to the Vascular Connection

Masayuki InoBaka
(Faculty of Agriculture, Miyazaki University)

Summary

Some experiments were carried out to make clear the relation between the vascular connection of the individual leaves with each other and with the tillers, and the growth of the individual leaves and tillers in rice plant. The results obtained are summarized as follows:

1) It was considered by the writer that the time of emergence of the (N+3)rd leaf was influenced by the activity of the (N)th leaf, being maintained at maximum against the other leaves during the period from the emergence of the (N+2)nd leaf to that of the (N+3)rd leaf and also by the activity of the (N+1)st leaf which is closely connected by vascular strand with (N+3)rd leaf. The ordinal numbers above mentioned mean the position of the leaves or tillers on the main culm. That is, (N)th leaf (tiller) means a certain leaf (tiller), (N+1)st leaf (tiller) is the leaf (tiller) above the (N)th leaf and so on.

2) The growth of the (N+2)nd leaf was correlated with the (N)th one that showed the maximum activity during the development of the former one and was connected by the vascular strand with it. 3) The time of emergence of the 1st and 2nd leaves on the (N)th tiller was affected by the culm leaf showing the highest activity during their growth and by the activity of (N+1)st leaf connected with them. The (N)th leaf had an influence on the emergence of the 1st leaf of (N)th tiller. 4) The growth of the 1st and 2nd leaves on the (N)th tiller was found similar to the result mentioned above.

1) 片山：稲・麦の分葉研究 (1951).
2) 田中：土壌生産 28; 231 (1957).
3) 藤井：日作紀, 27; 60 (1958).
4) 植ノ坂：日作紀, 27; 191 (1958).