牧草の再生に関する研究
第1報 オーチャードグラスの再生と水分経済に
及ぼす土壌水分の影響

高橋潤**・松林実***・大泉久一**
（**東北農業試験場，***関東東山農業試験場）

多年生牧草の収量や生育数などは再生力によって大きく左右される。本研究は、いろいろな条件下における再生について調査し、その構造を明らかにして牧草栽培上の基礎資料にしようとするものである。

まず、土壌水分は牧草の高位生産を得るにわかり重要な条件であり**、夏場の土壌水分が著しく低下している**ので、オーチャードグラスを用いて再生と土壌水分との関係を調べた。

試験の材料および方法

1959年には刈取り前の幼植物、60年には刈取り後の再生植物で実験した。すなわち、幼植物は1/5,000 aのボットにN0.5・P2O5.15・K2O 0.5 gずつ施肥し、1959年4月30日に播種して1ボット5本立とした。再生植物は1/2,000 aのボットにN1.5・P2O5.3・K2O 1 gずつ施肥し、1960年5月11日に播種して1ボット3本立とした。そして前者は6月2日から、後者の場合は7月7日に刈取ってから、Table 1に示したように、ボット内の水分状態を上から水分量から深度を差し引く点まで、5段階に測定した。実験はグラス室で行い、その期間中の気温はFig. 1のとおりである。

Table 1. Soil moisture treatment

<table>
<thead>
<tr>
<th>Plot number</th>
<th>Seedlings (1959)</th>
<th>Regrowth after clipping (1960)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Soil moisture</td>
<td>Air space</td>
</tr>
<tr>
<td></td>
<td>moisture (%)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>95～95</td>
<td>21.1%</td>
</tr>
<tr>
<td>2</td>
<td>80～70</td>
<td>28.4%</td>
</tr>
<tr>
<td>3</td>
<td>65～55</td>
<td>35.6%</td>
</tr>
<tr>
<td>4</td>
<td>50～40</td>
<td>42.9%</td>
</tr>
<tr>
<td>5</td>
<td>35～25</td>
<td>50.2%</td>
</tr>
</tbody>
</table>

Note: Soil moisture conditions are represented as percentage of maximum water capacity which were 115 % per dried soil in 1959 and 117 % per dried soil in 1960.

ボットの面積を測定し、蒸散量を測定することができるようにし、蒸散は持続的蒸散を測定して所定の水分条件を保つ。幼植物の場合は1区3ボットで、このうち3ホッコリー2日に、残りは7日2日に調査した。再生植物では途中8月2日と9月1日に刈取って3回の再生について調査し、最後は9月27日に刈取って測定し、測定の高さは教師より

5 cmとし、各試区3ホッコリーである。なお、9月1日の刈取後にホッコリー5cm・K2O 1 gの追肥を行った。

試験結果および考察

生育の推移を要望で見るとFig. 2のとおりで、両実験とも1区から1区までの差は少ないが、4・5区のように最大成長量の50%以下になると生育は著しく悪化し、特に再生植物の場合は、1回目の再生の前半では比較的成長の差が少ないが、後半訪れ小さいが生じ、さらに再生の回数が進むにしたがって乾燥条件での温度が著しく差が生じる。

乾燥は幼植物の1・2区間では差はないが、その他は一般に土壌水分の多いほど大で、干々乾燥には著しく悪くなる。特に再生の回数が多いほど、乾燥条件の差が著しく、環境条件の差が部品の再生の成長を抑制してやや欠乏したためである。

体内の水分含量は、Fig. 4に示したようにI区から3区まではほとんど差がないが、多湿の場合にもや
や下るようであり、4・5 区のように乾燥すると著しく低下し、生育と平行的な傾向が認められる。

次に NPK 含有率を見ると（Fig.5），幼苗と再生植物の場合は明らかに異なる傾向が認められる。すなわち、幼苗では N と P は土壌水分の少ない区ほど含有率が高くなるが、5 区のように極端に乾燥している場合は含有率が低く、K 含有率は逆に土壌水分の多いほど高いが、1 区のように多湿な場合はむしろ低くなった。これに対して再生植物においては、第 1 回再生では NPK とも土壌水分の少ないほど含有率が高く、第 2・3 回の再生では、前述した第 2 回再生の N と K はやや欠乏したために多湿な区の含有率が低くなったが、そのほかの要素値も土壌水分が多くて生育の旺盛な区ほど含有率が高かった。これらの幼苗、および幼苗の成長が各区とも同一の条件から出発した 1 回目の再生では、生育量の小さい場合に含有率としては高くなるのであろうが、不利な条件で生育して養分の蓄
高橋・松林・大泉——牧草の再生に関する研究（第1報）

Fig.7 N/P Ratio of orchard grass plants as affected by soil moisture.

Fig.7のN/P比を見ると、幼苗植物では3区が最も低いくてそれよりも多湿または乾燥の場合は高くなる。なお、多湿および乾燥条件ではNに対してPの含有が低く、再生植物の場合は、1回目の再生では明らかでないが、2・3回目の再生では土壌水分の少ない区ほどPに対するNの比率が高い。そして、前述したよう

に乾燥条件ではこのN含有が少なく、しかも可溶性Nの割合が多いのである。このことから、適度条件ではN同化が順調に行われながら、乾燥または過湿条件の場合は浸透水有効性が低まって蛋白質の生成を規制し、再生には非常に不利な条件であることを示すものと考えられる。

水分関係はTable 2に示すとおりである。蒸散量はいずれも潮満な区ほど多く、乾燥区と向下に5区では著しく少ない。蒸散量は、幼苗植物では特に土壌水分の多い場合に著しく乾燥化するほど低い傾向があるが、その差は大きくない。これに比べて再生植物では、1

Table 2 Water economy of orchard grass as affected by soil moisture (per pot)

<table>
<thead>
<tr>
<th>No.</th>
<th>Amount of water transpired</th>
<th>Dry matter increased</th>
<th>Water requirement</th>
<th>Regrowth after clipping (1960)</th>
<th>Dry weight</th>
<th>Amount of water transpired</th>
<th>Water requirement</th>
<th>Dry weight</th>
<th>Amount of water transpired</th>
<th>Water requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 2〜22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1st regrowth (July 7〜Aug. 2)</td>
<td></td>
<td></td>
<td></td>
<td>1st regrowth (Aug.2〜Sept.1)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>742</td>
<td>3.52 0.74</td>
<td>211 174</td>
<td>10.22</td>
<td>6.77 662</td>
<td></td>
<td></td>
<td>7.02 6.45</td>
<td></td>
<td>918</td>
</tr>
<tr>
<td>2</td>
<td>618</td>
<td>2.91 0.70</td>
<td>212 171</td>
<td>8.21</td>
<td>5.55 676</td>
<td></td>
<td></td>
<td>7.67 5.88</td>
<td></td>
<td>766</td>
</tr>
<tr>
<td>3</td>
<td>355</td>
<td>1.53 0.60</td>
<td>232 167</td>
<td>5.53</td>
<td>3.70 668</td>
<td></td>
<td></td>
<td>4.18 3.50</td>
<td></td>
<td>838</td>
</tr>
<tr>
<td>4</td>
<td>217</td>
<td>1.15 0.44</td>
<td>189 136</td>
<td>2.65</td>
<td>1.77 669</td>
<td></td>
<td></td>
<td>1.92 2.34</td>
<td></td>
<td>1,221</td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>June 22〜July 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3rd regrowth (Sept. 1〜27)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,091</td>
<td>2.70 1.15</td>
<td>405 284</td>
<td>11.48</td>
<td>5.93 517</td>
<td></td>
<td></td>
<td>667</td>
<td></td>
<td>552</td>
</tr>
<tr>
<td>2</td>
<td>1,091</td>
<td>2.71 1.13</td>
<td>403 284</td>
<td>10.57</td>
<td>5.43 514</td>
<td></td>
<td></td>
<td>642</td>
<td></td>
<td>568</td>
</tr>
<tr>
<td>3</td>
<td>1,021</td>
<td>2.83 1.10</td>
<td>361 260</td>
<td>7.77</td>
<td>4.22 543</td>
<td></td>
<td></td>
<td>681</td>
<td></td>
<td>567</td>
</tr>
<tr>
<td>4</td>
<td>517</td>
<td>1.45 0.95</td>
<td>357 215</td>
<td>4.47</td>
<td>2.60 582</td>
<td></td>
<td></td>
<td>691</td>
<td></td>
<td>567</td>
</tr>
<tr>
<td>5</td>
<td>227</td>
<td>0.74 0.76</td>
<td>307 151</td>
<td>1.33</td>
<td>1.26 948</td>
<td></td>
<td></td>
<td>913</td>
<td></td>
<td>676</td>
</tr>
</tbody>
</table>

Total water requirement

<table>
<thead>
<tr>
<th>clipped part</th>
<th>Top</th>
<th>Top + Root</th>
</tr>
</thead>
<tbody>
<tr>
<td>667</td>
<td>552</td>
<td>466</td>
</tr>
<tr>
<td>642</td>
<td>568</td>
<td>484</td>
</tr>
<tr>
<td>681</td>
<td>567</td>
<td>460</td>
</tr>
<tr>
<td>691</td>
<td>567</td>
<td>438</td>
</tr>
<tr>
<td>913</td>
<td>676</td>
<td>474</td>
</tr>
</tbody>
</table>
Studies on the Regrowth in Herbage Plants

1. Effects of soil moisture contents on regrowth and water economy in orchard grass plants

Hitoshi Takahashi*, Minoru Matsumayashi**
and Hisakazu Oizumi*

(*Tohoku Agric. Exp. Sta., **Kanto-Tosan Agric. Exp. Sta.)

Summary

Some growth response after clipping of orchard grass (Dactylis glomerata L.) under several soil moisture levels were investigated. The results were as follows:

When the soil moisture was deficit, the contents of nutrients and water in the plants were so decreased that growth after cutting was poor. Consequently, after several cuttings the yield decreased more severely. The same tendency was observed in the excess humid condition. Water utilization of the plants under such conditions was inefficient.

Under favorable condition of soil moisture, the contents of nutrients and water in the plants increased, stubble and root reserves became greater, and therefore the regrowth after clipping was vigour and the yield of dry matter and protein increased. Moreover, the water use efficiency was high.