水稲品種の光合成と耐肥性に関する研究

第２報　早生品種の光合成と耐肥性との関係

長田 明夫・村田 吉男
（農業技術研究所）

前報において、耐肥性の異なる中生種品種の間でみられた光合成能力と耐肥性との密接な関係が、耐肥性の異なる早生品種間でも認められるか否かを検討するため同様の試験を行なった。本試験も前報と同じく農業技術研究所の農場で実施した。これらの中生種の一部を図示して示す。これらの品種を四つに分けたN区段階のもとに圃場で圃場研究室で栽培し、そのうち標準N区（硫安2,800 mg/a、記号N2）、多N区（5,500 mg/a、N4）（いずれも中肥の）の2区につき、出穂期に光合成、呼吸作用、葉面積、葉の厚さ、光の通過率等を測定し、また別にN濃度を変えた水耕試験により葉面当たり光合成能力を測定した。

結果および考察

1. 個体群光合成能力　圃場において測定した水稲個体群の光合成能力と光の強さとの関係（第1図）からは耐肥性に関しては特定の傾向がみられない。また強光として7万lux、弱光として3万luxにおける能力を比較してもみると（第2図）、N4区の亀尾・アキバエが比較的高い値を示している外は品種の間の一定の傾向がない。またN施用量の増加に伴う光合成能力の促進率（N4/N2）も、亀尾が高い値を示した外は、耐肥性との間に一定の関係が認められない（図略）。この点、前報の中生種では光合成能力の促進率は、耐肥性の強いものほど大であったのである。

2. 個体群呼吸作用　個体群の呼吸作用（第3図）はN2、N4区のいずれにおいても、アキバエを例外として考えると、耐肥性の弱い品種の方が盛んな傾向がみられ、またN2に対するN4の呼吸率においても同様な傾向がみられる。中生種では、各区内では品種の間に一定の傾向がなかったが、N施用量の増加に伴う呼吸の促進率が通常の強い品種ほど小さかった。したがって早・中生品種を通じて、耐肥性の弱い品種がN施用量の増加による呼吸の促進率が大きいといえる。

3. 個体群同化—呼吸比　中生種の場合と同様に、物質生産の総合的な効率を表す指標として、個体群同化—呼吸比P/Rを算出した。この比はN施用量が多いほど、また光が弱いほど低下したが、強・弱光下、N2、N4区のいずれにおいても、アキバエという例外はあるが、耐肥性の強い品種の方がP/Rが高い。
傾向にある。第4図に、各区における強弱が示す平均値を示した。しかしN施用量の増加によるこの比率の変化の程度は、肥塚性と一定の関係を示さなかった（図略）。

これに対し中生種では、P/Rの値そのものが品種の間に一定の傾向がみられず、N施用量の増加に伴う変化の程度において、肥塚性と平行関係がみられた。すなわち、中生種では肥料に対する反応という肥塚性の意味において平行関係を示したのであるが、早生種では本来持っている性質、すなわち肥塚性というよりも多収性とよべき性質において、肥塚性との関係を示したのである。

4. 群体群同化呼吸比の構成要素と肥塚性 前報で述べたよう

に、P/Rは葉面当たり光合成能力、乾物当たり呼吸の強さ、受光能率、葉面気流率の四つの要素からなっているから、これらの要素の変化を検討してみる。

i）葉面当たり光合成能力 単位乾物当たりの呼吸の強さ（第5図）、アルファという例外はあるが、N2、N4区において肥塚性の弱いもののが明らかに大きくなり、N2区の尾花沢1号、亀亀等は、肥塚性の強いフジノリ、藤塚5号に比し16～40％も高い値を示している。しかしN施用量の増加に伴う促進率では、肥塚性との間に一定の傾向を示さなかった。中生種では、各区における品種差異には一定の傾向なく、促進

Table 1 Photosynthetic activity on unit leaf area of early rice varieties water-cultured at three nitrogen levels.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Photosynthesis, CO₂ mg/100cm² LA/hour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L</td>
</tr>
<tr>
<td>1 Fujimori</td>
<td>9.40</td>
</tr>
<tr>
<td>2 Fujisaka No.5</td>
<td>10.39</td>
</tr>
<tr>
<td>3 Akibae</td>
<td>10.56</td>
</tr>
<tr>
<td>4 Norin No.1</td>
<td>10.37</td>
</tr>
<tr>
<td>5 Ohazawa No.1</td>
<td>12.72</td>
</tr>
<tr>
<td>6 Kameno</td>
<td>10.71</td>
</tr>
</tbody>
</table>

Notes: Sample leaves were taken from the plants 8-9 days after transferring to different nitrogen levels.
Measurement was done at 28°C, 40 Kux light.
L, low N plot; M, medium N plot; H, high N plot.

i）乾物当たり呼吸の強さ 単位乾物当たりの呼吸の強さ（第5図）、アルファという例外はあるが、N2、N4区において肥塚性の弱いもののが明らかに大きくなり、N2区の尾花沢1号、亀亀等は、肥塚性の強いフジノリ、藤塚5号に比し16～40％も高い値を示している。しかしN施用量の増加に伴う促進率では、肥塚性との間に一定の傾向を示さなかった。
率において耐肥性と負の相関を示したのである。

iii) 受光能率、葉面積比率（LAR） 受光能率の代わりに、前報同様、株間における透光率と葉面積から算出した透光係数Kにより受光態勢を比較した（第2表）。N2区では耐肥性の弱い品種の方がKが大きく、受光態勢が劣るが、N4区では6品種を通じてKの値に余り差がみられない。またN施用量の増加により耐肥性の弱い品種はKが減少し受光態勢の改善がみられた。

一方葉面積は、穂尾が多Nで高い値を示すのは耐肥性との間に一定の傾向はみられない（第6図）。しかしN施用量の増加による葉面積の増大率は耐肥性の弱い品種ほど大である（図略）。

中生種では、耐肥性の強いものはNレベル下での葉面の伸長が一般に大きく、受光態勢の改善程度が良好であったが、早生種ではこのような、耐肥性の弱いものほど葉面の伸長が大きく、受光態勢も改善された。このことは多N条件に対する形態的適応の一種と考えられるが、その能力の大小は必ずしも耐肥性の強弱と平行的でなく、単に多Nによって葉面の伸長の
著しい品種ほど大であるといえるであろう。

LARは各區内において、またNの増加に伴なう変化において、いずれも品種間差異と耐肥性との間に一定の傾向を示さなかった（第6図）。

結 語

以上のように早生種においても、P/Rの大小は耐肥性の強弱と平行関係を示した。そしてP/Rを構成する四つの要素の動きを検討して次の結果を得た。すなわち（1）葉面光合成能は中生種と反対に耐肥性の弱いものの方が大であったが、（2）乾物作り呼吸作用は耐肥性の弱い品種の方が著しく大きい傾向を示し、（3）標準Nレベルでは耐肥性の弱いものが受光態勢が劣るが、N4条件下では葉面の伸長が大きいのに伴なって受光態勢の改善がみられ、品種間の差がなくなっていた。計6株面積比率では耐肥性との間に一定の傾向を示さなかった。こうして（2）乾物作り呼吸作用という要素の変化が最も強く影響して、P/Rが耐肥性の強い品種ほど大となったと解釈される。

したがって物質生産の効率という面からみた水稲品種の耐肥性は、その効率をP/Rで表すと、早生、中生を通じてこの比の大小と密接な関係を示す。そしてP/Rには葉面光合成能、乾物作り呼吸作用、受光能率、LARの四つの要素が関与し、これらの要素の総合的効果によってP/Rが決定されるということができる。しかしながら、早生種と中生種とはP/Rと耐肥性との関連の仕方が異なっている。すなわち、中生種ではN施用量の増加に伴なって変化、つまり肥料に対する反応という形態的適応においてP/Rの変化がみられたのに対し、早生種では肥料に対する反応という形ではなく、N施用量の多少にかかわらず常に発揮される性質という意味で耐肥性と関連を示したのである。したがってここに示された早生種における性質は耐肥性というよりも多収性に近いものといえよう。稲収量を物質生成と乾物の二つの面に分けて考えた場合、中生種では前者的面で耐肥性との関連が示されたが、早生種では、この面では多収性に近い意味での耐肥性と関連を示したに止まった。早生種の本来の意義での耐肥性は、主に後者の面に存在する可能性が高いと考えられる。

文 献

1）長田・村田（1962）日作報 30, 220。
Studies on the Relationship between Photosynthesis and Varietal Adaptability for Heavy Manuring in Rice Plant

II. The relationship in the case of early-maturing varieties

Akio Osada and Yoshio Murata

(National Institute of Agricultural Sciences)

Summary

In six early-maturing rice varieties, Fujiminori (suitable for heavy manuring), Fujisaka No.5 (suitable), Akiyoe (a little suitable), Norin No.1 (less suitable), Obanazawa No.1 (least suitable), and Kamemoo (least suitable), which were cultured on the paddy field under normal and double nitrogen levels, it was shown that the ratio of photosynthetic capacity to respiration (P/R), both on field area basis, had an intimate relationship with the adaptability for heavy manuring, the more suitable the higher the ratio. This is in good accordance with our previous results on medium varieties.

Moreover, the following facts were observed by investigating the four factors which compose the P/R ratio: (1) Photosynthetic activity on unit leaf area was higher in the varieties less suitable for heavy manuring, just reverse to the case of medium varieties. However, (2) respiration rate of unit dry matter was higher in less suitable varieties in accordance with medium varieties. (3) While the plant shape of less suitable varieties under normal nitrogen supply was rather unfavorable for receiving light efficiently in comparison to suitable ones, it became comparatively favorable under heavy nitrogen supply, considering its greater increase in total leaf area. (4) There was no definite relationship found between LAR and the adaptability. From these it was deduced that the above-mentioned changes in the ratio brought about by heavy nitrogen supply were chiefly caused by changes in the second factor, namely the respiratory activity. Summing up the results of both early and medium varieties, it may be concluded as follows:

In both maturing varieties, from the view point of efficiency in dry matter production, the varietal adaptability in rice for heavy manuring has a close relationship with the P/R ratio which represents a composite efficiency in dry matter production of rice plants as a whole.

However, early and medium varieties showed the following differences in the relationship: In medium varieties, the adaptability had a correlation with the P/R ratio not in its absolute value but in its rate of change due to high nitrogen supply, whereas in early varieties, the correlation was seen regardless of the level of nitrogen supply. In the case of early varieties, therefore, it is not the "adaptability for heavy manuring" itself but the "high yielding ability" that has a substantial correlation with the varietal response for manuring. When the grain yield is considered from two phases, namely dry matter production and its translocation, it may be said that in medium varieties, the P/R ratio is directly associated with the "adaptability" in the former phase, whereas in early varieties, it has a relationship with the "adaptability" only in broader meaning similar to the "high yielding ability". It may be possible, therefore, that in early varieties a definite relationship is to be found in the latter phase, namely in the translocation phase, between physiological characteristics and the "adaptability for heavy manuring".