マメ科作物における根瘤形成に関する生理・形態学的研究

八．根瘤のチッ素固定体制について

 реша 田 修 男
（東京大学農学部）

總 言
マメ科作物における根瘤のチッ素固定量は、その形成にあずかる根瘤菌の菌株によって異なり、まともにチッ素を固定しないものから多量のチッ素を固定するものまで、種々の程度のものであることはすでに知られている（池村：未発表、石沢：1955、Stever：1925）。また、この現象に対する形態学的研究においては、チッ素固定量を欠く無効菌株（Ineffective strain）によっても根瘤が形成されることも認められている（Thornton：1929、Baldwin および Fret：1929、渡辺：未発表）。本研究はチッ素を固定する有効菌株（Effective strain）を用い、根瘤の発達過程（齋藤：未発表）を詳細にし、チッ素の固定体がどのようにその過程に対応して成立していくかを明らかにしようとしたものである。

実験材料および方法
供試材料としてはニンドウ日本落葉種を用い、砂鉢栽培、ポット栽培および一部は圃場に栽培して観察に供した。用いた根瘤菌は、著者が1959年、農学部実験園場に栽培したニンドウ日本落葉株自生根瘤により調査された根瘤を対象にしたニンドウ根瘤菌（Rhizobium leguminosarum）の1菌株であるが、各種の根瘤試験の結果（齋藤：未発表）、有効菌株と認定されたものである。観察材料は寄主植物の全生育期にわたって、ほぼ主枝の根瘤が発達する一帯に集め、個体あたりの根瘤数、根瘤生体重および同物重を測定した。個体の根瘤数については、その発生より成熟、崩壊に至る全期間を通じて、根瘤の直径、バクテリオイド組織の体積、根瘤の生体重および同物重を測定し、さらに、この間における根瘤菌数（栄養の根瘤菌数およびバクテリオイド状の根瘤菌数）、バクテリオイド組織における根瘤菌数、デンプン、バクテリオイド状の根瘤菌の分布などを観察した。なお、これらの観察は次の方法によって行った。すなわち、根瘤の直径およびバクテリオイド組織の体積の測定はバリン法によって作成した永久標本を顕微鏡で観察し、測定し、根瘤菌数、デンプンの消長は採取直後の新鮮な根瘤の徒手切片を顕微光学的に観察した。菌数は二重法および計算圧法により、さらに、菌の形態の観察には光学顕微鏡の外に電子顕微鏡を用いた。根瘤によるチッ素の固定量は次の方法で測定した。すなわち、根瘤菌を栽培してチッ素を固定する有効菌株とし、砂鉢栽培した材料を3〜5日間隔で採集し、個体あたりの根瘤生体重および同物物重を測定し、同時に根瘤を含む寄主個体の全チッ素含有量をセミクロール法で測定し、両者の値より一定量の根瘤が一定期間で固定するチッ素量を算出した。

実験結果
I．寄主植物の生育にともなう色素別根瘤数の消長
（イ）発芽しつつある若い根瘤では将来、バクテリオイド組織は分化するべき部位、（ロ）成熟した根瘤ではバクテリオイド組織が、それぞれその発達の段階に応じて、白色、赤色、褐色あるいは褐色を呈する。この色の変化は根瘤色素（Nodule hemoglobin）の有無およびその種類の変動によるものであることは周知のところである。
寄主植物の生育にともなう白色、赤色、褐色および褐色根瘤数の増減を測定した結果（第1図）、次のべるべること事を認めた。すなわち、寄主植物の生育初期（第1〜第2相葉展開期）に外観的に認められる若い根瘤はすべて、白根瘤であるが、後、寄主植物

第1図 寄主植物の発育に伴う色素別根瘤数の消長（東京：日本落葉）

注）1．白色は根瘤色素が存在しない場合（以後白色根瘤と呼ぶ。以下同じ。）、赤色はleghemoglobin（赤根糖）、緑色はlegcheloglobin（緑根糖）、褐色はleghemoglobinまたはCoproporphyrin（褐色根瘤）の存在によるものであり、これらの色素はバクテリオイド組織内でleghemoglobin→legcheloglobin→leghemoglobin→Coproporphyrinと変化する（VirtanenおよびLaine：1946）。
II. 根瘤の構成組織の発達に対応してみた場合の根瘤菌の動向：根瘤の発生（初期感染細胞の形成時より観察を始めた）より成熟にいたる期間における根瘤菌の生動体およびパクテリオイド組織の体積の増加と根瘤菌の増加との対応関係を観察した結果（第2図）, 根瘤菌の生動体およびパクテリオイド組織の体積の増加と根瘤菌数の増加は平行的であって, それぞれ高い相関係があることが認められた. また, この場合, 根瘤菌数の増加は著しく直線的であって, 根瘤菌の発達の段階の2.5は無関係であることも認められた. なお, ここでいう根瘤菌数とは根瘤菌とパクテリオイド状の根瘤菌を合計したものであるが, パクテリオイド状の根瘤菌は根瘤の一定発達段階にいたってはじめて出現するものであることが認められた. すなわち, 初期感染細胞の形成より成熟期（The embryonic stage）にいたる期間は, 根瘤菌はすべて根瘤菌の形態で増加し, 分化期（The stage of differentiation）より成熟期（The stage of maturation）にいたる期間は根瘤菌およびパクテリオイド状の根瘤菌の形態で増加するのである. パクテリオイド組織はパクテリオイド状の根瘤菌の出現してくる相関は次のことである. すなわち, 最初, 分化しつつあるパクテリオイド組織の部（寄主組織の中心柱方向, 第3図参照）はパクテリオイド状の根瘤菌の分布域が形成される（パクテリオイド状の根瘤菌の分布する部位をそれぞれ分布している部位を明確に区別されるので一定分布域と呼ぶ）が, この分布域は根瘤の発達にともなって次にパクテリオイド組織の頂部方向（根瘤の頂部分裂組織方向）に広がり, 根瘤の形態分化が完成する成熟期には同組織全体に分布するようになるのである. 後, 根瘤の成熟がはじまり, 最初にパクテリオイド状の根瘤菌の分布域が形成された部位を基準としてパクテリオイド状の根瘤菌の消失が始まる. この場合も, 同組織にパクテリオイド状の根瘤菌が分布域を形成して出現していく場合と同様に, 分布域を形成することが認められる. この消失域は根瘤の崩壊を進むとともに成熟期頂部方向に広がり, パクテリオイド組織の全果がlegcholeglobin（後出）によって緑色となる時期には, パクテリオイド状の根瘤菌の根瘤菌消失期としては完全に消失し（第3図, さらに, この組織は褐色に変る, 軽度に崩壊する. この崩壊の経過においても, 番号の根瘤菌は崩壊しつつあるパクテリオイド組織内に少数ながら存在することが認められる（第4図）.

III. パクテリオイド組織における根瘤菌の胞子: デン粉およびパクテリオイド状の根瘤菌の胞子, とにそれらの相互関係: 初期感染細胞の形成より根瘤の形態にいたる間のパクテリオイド組織における根瘤菌胞子, デン粉およびパクテリオイド状の根瘤菌の胞子について, それらの相互関係を観察した結果（第3図, 第4図）, はなるべくとごく事実が認められた. すなわち, 根瘤菌が寄主組織内に侵入し, 初期感染細胞を形成し, さらに, 分裂細胞群を形成する出現期では, その部分（分げa, パクテリオイド組織）の一部は白色であって, 根瘤菌胞子の存在を認めない. 分化期にいたると, 分化しつつあるパクテリオイド組織の基部に, leghemoglobin（赤色）が出現する. この色素の出現の相模は同組織にパクテリオイド状の根瘤菌が出現してくる場合と同様に, 分布域の形成が認められる. これ分布域は根瘤の発達とともに次に成熟期頂部方向に広がり, 成熟期には同組織の全果に分布するにいたる段階が崩壊を始めると, パクテリオイド組織で最初に leghemoglobin が出現した部分に leghemoglobin→legcholeglobin（赤→緑）の変化がおこり, leghemoglobin が
同組織で分布を広げた場合と同じように、れらの組織で分布を広げ、パクテロイド組織を緑色に変える。さらに根端の新しい形態と、れらの組織で分布を広げ、パクテロイド組織を緑色に変える。

一方、パクテロイド組織における（イ）デンゴおよび（ロ）パクテロイド状の根腐れの形態と、（ハ）leghemoglobinの形態を比較検討したところ、その出現してくる部位、出現時期、分布の形態、分布域の拡大の様相およびその消失の経過において三者（イ、ロ、ハ）は完全に相関関係にあることが認められた（第3図、第4図、第6図）。

IV. 根腐れのチッタ素定量：根腐れのチッタ素(N)固定量を測定した結果（第5図）、次の事実を知った。

すなわち、一定重量（生体重）の根腐れが一定期間に固定するチッタ素量は常に一定しているものではなく、寄主植物の条件によって変動するものである。たとえば、本実験で測定した寄主植物の全チッタ素含有量と根腐れによるチッタ素の固定量とは密接な関係を示し、寄主植物のチッタ素含有量の多い生体重においてチッタ素固定量は少なく、寄主植物のチッタ素含有量の少ない生体重においてチッタ素の固定量が多いという関係を示した。

考 査

根腐れの発達過程、すなわち、初期感染期の図形、根腐れの構造組織の形成およびその変化、根腐れにおける根腐れの増大があることはすぐに報告したところであるが（鈴田、1956）、本実験では、さらに、根腐れの生体重あるいはパクテロイド組織の体積などの増大と根腐れの数の増加とは、それぞれ高い相関関係にあることが明らかとなった。また、この場合、根腐れの状況を変化させて、パクテロイド状の根腐れにおいて、それぞれの長さと根腐れの発達經過との相互関係を検討した結果、発芽の根腐れは発芽の全期間にわたって増加するが、パクテロイド状の根腐れは出現より分化期後に移行しはじめて出現し、後、成熟期まで増加するものであることを知った。これに認められる、出現時間より分化期への移行とパクテロイド状の根腐れの出現は時間的に一致する現象は、注目すべきものである。すなわち、この現象と。渡辺（未発表）、鈴田（未発表）が無効根腐れの一例を示す形で形成された根腐れを解剖観察した結果、当根腐れは分化期以前の段階でその発芽りが停止しており、かつ、その細胞細胞壁膜内にはパクテロイド状の根腐れの存在が認められなかったという事実を併せて考えると、根腐れの発達過程における諸段階と根腐れの増大との相互関係を次のように理解してよいのではないかと考えられる。すなわち、根腐れが寄主組織内へ侵入して初期感染組織を形成し、さらに、その増大によって発泡細胞およびそれに接する非感染細胞を分隔細胞化して細胞分裂を誘発し、細胞分裂の形態を形成する出現期までには状状の根腐れの増大が十分である。しかし、細胞分裂から根腐れの構造組織を分化し、さらに、それも成熟させるにはパクテロイド状の根腐れの増加、あるいはそれと状状の根腐れの共存が必要であるということである。この関係を検討すれば、状状の根腐れは寄主組織内へ侵入し、かつ、寄主組織の成熟細胞を若返させる（細胞の分裂能力を再獲得あるいは再活性化させる）ということである。一方、パクテロイド状の根腐れあるいはそれと状状の根腐れの共存は分裂活性の高い細胞群の組織分化に対して誘導的に作用することができる。

どのような生理的および形態的構造をもつものを活性根腐れとよぶ。この間に答える研究は従来ほとんど行われていなかったが、これに関連をもつものとして、Virtanen, ErkamaおよびLinkola（1947）、Heumann（1952）、渡辺（未発表）、鈴田（未発表）などによる無効根腐れについての観察結果をあげることができる。これらの観察結果により、いずれも、無効根腐れ株によって形成（前述のごとく、形態的には不完全であるが）された根腐れには多くの場合パクテロイド状の根腐れが存在しないか、また、それが存在する場合でも、その数は少なく、かつ、その存在期間が短くも短いため短いことを認める。著者は、これらの結果を考慮して、根腐れがチッタ素(N)を固定するためには、根腐れのパクテロイド組織内にパクテロイド状の根腐れが存在し

第5図 根腐れによるチッタ素固定量の変動
（イ） indefinite（未発表）
根瘤生体制

<table>
<thead>
<tr>
<th>増加</th>
<th>減少</th>
</tr>
</thead>
<tbody>
<tr>
<td>増産効果</td>
<td>増産効果</td>
</tr>
<tr>
<td>根瘤素</td>
<td>根瘤素</td>
</tr>
<tr>
<td>根瘤</td>
<td>根瘤</td>
</tr>
<tr>
<td>殻粉</td>
<td>殻粉</td>
</tr>
<tr>
<td>N<sub>2</sub>固定期</td>
<td>共生前</td>
</tr>
<tr>
<td>寄生</td>
<td>寄生</td>
</tr>
</tbody>
</table>

第6図 根瘤のN₂固定体制の成立観

なければならないという前提に立って観察を進めてみたのであるが、バクテロイド組織内におけるleghemoglobinの効用および、根瘤によるチッ素の固定量の検討結果などから、この前提は正しいものと推察された。

この考えに立って、根瘤のチッ素固定体制およびその保持期間を根瘤の発達との関連においてみてみると、チッ素を固定しうる期間は、根瘤の発達過程における一段階であるということができるようである。すなわち、組織の発達段階からみれば、分化期より成熟期にいたる期間であり、根瘤色素の変遷経過からみれば、leghemoglobinの存在する期間であり、さらに、デン粉についていれば、バクテロイド組織内に多量のデン粉が存在する期間に限られることができる（第6図）。

根瘤によるチッ素の固定量を検討した結果、その固定量は常に一定しているという性質のものではなく、寄主植物の生体条件によって動揺するものであることが知られたことを最後に指摘しておくと、すなわち、寄主植物の全チッ素含有量と根瘤によるチッ素固定量とは逆比例的な関係にあることを認めたのである。鎌田（1956）は、マメ科作物の栽培において多量のチッ素肥料を適量すると根瘤の形成（根瘤数およびその生産量あるいは貯藏量）が著しく減少することを報告したが、この報告を本実験で得られた、根瘤によるチッ素固定量の観察結果についての見解関係について示す並ぶ考えると、マメ科植物はその生長に必要とするチッ素量を、根瘤の形成量の多少と、根瘤の活性の強弱という2つの条件によって調節しているものと推察されるものであり、この現象は一種の自己調節作用と言わざるを得ないものと考えられるのである。

引用文献
3) 石沢修一 (1955) 茎科植物の根瘤菌に関する研究，II. 茎科植物との関係，I 1根瘤形成からみた関係，土壌誌. 25; 4～8.
4) 鎌田俊男 (1956) 大豆における根瘤形成に関する生理，形態学的研究，I 茎素供給量と根瘤発達について，日作記，25, 145～146.

本研究の遂行にあたって御指導をいただいた東京大学教授川田信一郎先生および同大学助教授村松長男先生に対し厚く御礼申しあげるものである。
第3図 バクテロイド組織内における根瘤色素、根瘤菌およびデン粉の消長。(光学顕微鏡 : 約480倍)。
1. 出現期の根瘤の縦断面、分裂細胞群(D)は白色であつて、桿状の根瘤菌のみが認められる。C：寄主根の皮層。CS：寄主根の中心柱。
2. 分化期の根瘤の縦断面、バクテロイド組織(B)の基部(R)にはバクテロイド状の根瘤菌、leghemoglobinおよびデン粉が分布し、中央部(W)は白色であつて桿状菌のみが存在する。ND：根瘤分裂組織。
3. 成熟期の根瘤の縦断面、バクテロイド組織(B)の全域にバクテロイド状の根瘤菌、leghemoglobinおよびデン粉が分布する。
4. 墮落期初期の根瘤の縦断面、バクテロイド組織(B)の基部はlegcholeglobinによって緑色(G)、頂部はleghemoglobinによって赤色(R)を示す。
5. 墮落期の根瘤の縦断面、バクテロイド組織(B)はlegcholeglobinによって緑色(G)となる。
6. 墮落期末期の根瘤の縦断面、バクテロイド組織(B)はlegmethemoglobinによって褐色(BR)となる。
Morphological and Physiological Studies on Nodule Formation in Leguminous Crops.

VIII. On the nitrogen fixing systems in nodules of pea plants.

Eiho Kamata
(Chair of Agriculture, University of Tokyo)

Summary

Two phases of the nodule bacteria and nodule development complex have been studied; (a) the growth and the advancement in life cycle of nodule bacterium during nodule formation, and (b) the histology of nodules.

(1) The developmental process in nodule formation in leguminous plants could be divided into five stages as follows:
 a) The infection stage, b) the embryonic stage, c) the stage of differentiation, d) the stage of elongation, and e) the stage of maturation and the senescent stage by a conventional means.

The increase in total number of bacteria in nodule was closely correlated with the increase in nodule diameter, in volume of bacteroid tissue and in nodule dry weight, But it did not show any direct relation with the progress of nodule forming stages, A rapid decrease was detected with bacteria number during the senescent stage.

The nodule bacteria were classified into "rod-shape bacterium" and "bacteroid-shape bacterium" according to their life cycle stage by morphological and physiological points of view. The rod-shape bacteria were observed from the infection stage to the embryonic stage and the rod-shape bacterium and the bacteroid-shape bacterium were detected in a bacteroid tissues from the stage of differentiation to the stage of maturation. At the senescent stage, however, the bacteroid-shape bacterium disappeared in bacteroid tissues, and as a result, only the rod-shape bacteria were observed.

(2) Leghemoglobin formation in bacteroid tissues of nodules was detected in the stage of differentiation. At first it appeared at the base of the bacteroid tissue, and then increased until the entire tissue showed the red pigment at the stage of maturation. At the senescent stage, the red pigment color changes to green pigment starting from the base of bacteroid tissue viz.leghemoglobin (red)→legcholeglobin (green)....... The distribution area of green pigment also enlarged in the same manner as in the red pigment. In the final stage (senescent nodule) the nodule pigment change occurred again in the same manner as before, viz.legcholeglobin (green)→legmethemoglobin (brown).

(3) The change in distribution of leghemoglobin and starch in bacteroid tissues of nodules was found to be closely synchronized with the bacteroid-shape bacteria.

(4) The N₂ fixing power of nodule is dependent on the physiological conditions of the host plants such as the total nitrogen contents.