水田雑草タイヌビエの生理生態学的研究

第4報 休眠覚醒過程における種子の死滅について

荒井正雄・宮原益次（農事試験場）

タイヌビエ種子の一次休眠および二次休眠についての各種の実験中、また畑場における種子の生存状態を調査している間に、タイヌビエ種子は休眠覚醒過程において多数のものが死滅することを発見し、それに関与する要因について明らかにことができたので、それらの結果の主要な点について報告する。なお、タイヌビエ種子の生死判別には、TTC還元力による方法がよく行われる信頼性があることを明らかにしたので（未発表）、この方法を用いた。

1 死滅種子の発現

前報①の土堤中における一次休眠・二次休眠覚醒実験の材料を供試して、貯蔵期間別に発芽試験後の未発芽種子について、それぞれTTC還元力により生存を判別した。

その結果、一次休眠種子・二次休眠種子ともに、8℃～5℃畳水分土堤中および戸外畳水分土堤中に貯蔵した場合には多数の死滅種子の発現が認められた（第1図）この死滅種子の発現状況は、一次休眠種子および二次休眠種子において短期間の貯蔵から現われ、死滅種子歩合も高かった。死滅種子の発現する最初の時期は、一度休眠種子・二次休眠種子とも、休眠覚醒雛子の発芽が認められるばから2ヶ月後であった。ここに見出された死滅種子は、初期の外著上生存種子を全く認められず、また雛子を切断した場合に胚および胚乳部とも生存種子と差異がないが、ただ胚部においてTTCと還元力が全くなかったし、そして、貯蔵期間が長くなるにともない、胚乳部は褐色～黑色に変化し、しばしばその状態を保持するが、後期には胚乳部まで変色しているものがあった。

2. 死滅種子の発生に関与する要因

1980年の一次休眠種子および79年のった休眠種子を供試して1980年3月4日より次の実験を行なった。それぞれの種子を観光池に混ぜて試験群に分け、土塀水分を畳水分（容水量の70～80％）および風乾状態（容水量の10％以下）とし、30℃、20℃、10℃、5℃および-5℃にそれぞれ貯蔵した。なお、puおよびsu種子については-5℃以外の温度条件で畳水分土堤中（深さ1～2cm）貯蔵を設けた。このような条件下に貯蔵した種子をほぼ1か月後に4回にわたり取り出し、30℃10日間・30℃5日間・変温5日間の発芽試験を行ない、未発芽種子についてTTC還元力により生存を判別した。

埋蔵期間中の土堤のEhは、溝水分土堤では10℃～30℃にわたり測定したが、深い液塢状態であった。5℃では1か月後に300～350mv、その後は200～300mvであり、畳水分土堤中ではいづれの温度でも600mv以上であった。

埋蔵期間別種子の生存状態は特徴的な変化を示し、30℃、20℃および-5℃について示すと第2図のとおりであり、また埋蔵4か月後の死滅種子歩合は第3
図のとおりであった。死滅種子の発芽は種子の生存状態の変化と密接な関係が認められた。
30℃貯蔵についてみると、間水土壌中では、埋蔵開始時の休眠覚醒種子は、埋蔵開始後直後に発芽するものが多かった。また埋蔵開始時に休眠状態にあった種子は急速に休眠からき、その後これらはほとんどの全種子が供試休眠の状態にあったが、4か月後には二次休眠種子が出現した。筋水土壌中では、間水土壌中と同様に埋蔵開始時の休眠覚醒種子は発芽するものが多かったが、未発芽種子は貯蔵1か月後には大部分休眠からき、その後再び休眠状態に入った。乾燥土壌中では、発芽するものは全くなく、休眠状態にあった種子は徐々に休眠からき、4か月後にはすべての種子が供試休眠の状態にあった。以上のように、30℃においては、いずれの種子・土壌水分においても、発芽を示さないで死滅する種子が全く認められなかった。
20℃においては、発芽種子が少なかったが30℃ほど同様であった。
10℃においては、貯蔵の後期に所定温度より上昇したことによって筋水土壌中で発芽する種子がわずかにあったのみで、ほとんど全種子は未発芽の状態にあった。筋水土壌中では貯蔵の全期間中すべての種子が供試休眠の状態にあり、死滅するものは全くなかった。筋水土壌中では、埋蔵開始時の休眠種子は1～2か月間の貯蔵で休眠からき、貯蔵1～2か月後より死滅種子が発現し、それは貯蔵3か月後までは急激に増加し、その後はほとんど增加しなかった。この死滅種子の発現状況は、種子の前図によって差が認められ、埋蔵開始時に休眠覚醒種子の多かったものにおいて著しかった。筋乾土壌中では、休眠種子は徐々に休眠から覚醒し、貯蔵の後期にほとんど全種子が供試休眠の状態にあり、死滅種子の発現はPS種子においてわずかに認められたにすぎなかった。
5℃貯蔵では、発芽するものは全くなく、休眠の生存状態は各土壌水分とも10℃とはほぼ同様な傾向を示した。しかし、筋水土壌中における死滅種子の発現は10℃より少なかった。
5℃貯蔵においては、筋水土壌中では埋蔵開始時の休眠覚醒種子が貯蔵1か月間ではほとんど全休眠からき、埋蔵開始前に筋水土壌中に貯蔵していたPS種子のみが貯蔵期間が長くなると死滅種子がわずかなに発現した。筋乾土壌中では、埋蔵開始時の休眠種子はPSおよびSD種子では急激にささめ、PS種子では徐々に覚醒し、死滅種子は筋水土壌中と同様にPS種子のみにわずかに発現した。
以上の結果より、発芽によるのではない休眠覚醒過程におけるタイヌビ種子の死滅は、温度と土壌水分により発現基準が異なり、発芽温度以下で筋水土壌中においてのみ発現することが明らかである。しかしながら、死滅種子の発現は種子の休眠性と密接な関係
が認められ、休眠の覚醒が進行する条件下で、休眠覚醒が進んでいる種子において著しい。しかし、休眠覚醒が進行する条件でも、酸素の供給がほとんどない浸水土壌中および水分の供給の少ない乾燥土壌中においては死滅種子の発現は全く認められない。したがって、死滅種子の発現条件は、種子の休眠が覚醒し、水分と酸素の供給があつて、温度が発芽温度以下（とくに5℃～10℃）で起るものといえる。なお、5℃では浸水土壌中で休眠がさめた種子のみにわずかに死滅種子が発現し、乾燥土壌中で休眠覚醒が進行した種子では発現しなかったが、これは、5℃～10℃の場合とは異なる機構によって死滅が起きたためと考えられる。

3. 乾田と湿田における死滅種子発現の差異

1958年12月12日に、戸外に設置した90cm角・深さ60cmのコンクリートボックの土層に、同米産タイスビさんがつ種子（ボッチ47,000粒）を混合した水田耕土を15cmError! Equation not found.した。そして、乾田区と湿田区を設けた。両区3反復、両区における土壌水分条件は、乾田区では6月下旬から9月下旬までの間浸水（1日当たり2～3cmの浸水）をとめなかった。それ以上は、5月下旬から9月上旬の浸水を行わなかった。それぞれのボッチは、5月下旬浸水層を掘り下げ、6月下旬から9月上旬の浸水を行わなかった。湿田区は年間浸水状態とし、浸水を行わなかった。それ以上の浸水は、5月下旬浸水層を掘り下げ、6月上旬から9月上旬に、それぞれ15×5cmの打抜きで1区1～2cmずつ耕土全層を抜き土層別に調査した。環境条件としては、土壌のEhが土層別に調査した。

土壌のEhは、乾田区では乾田は浸水後600mv前後で浸水状態であり、浸水開始とともに基準に低下し、8～9月には100～200mvとなり、浸水期間中は浸水状態であった。湿田区では、いずれの時期におよぶ350mv以下で浸水状態であったが、耕土下層区間は浸水1年間の浸水状態が比較的小さく100mv前後であり、上層は8月には100mv前後に低下し、冬には300mv前後に上昇した。

種子の生存状態は第4図に示したとおりであった。乾田区では、種子の生存状態は冬期における一次休眠の覚醒と死滅種子の発現する期間、春から春までの二次休眠覚醒と発芽・発生する期間、春から春までの発芽・発生と二次休眠覚醒の順に進行した。そして、冬から春の間における直接死滅種子の発現が著しく、春における生存種子数、当初種子数に比して、実験開始翌年約50％、その後
年が約2%となり、実験開始3年目の秋には全くなくな
った。

湿田区では、乾田区とさわめて異なった生存状態を
示した。すなわち、冬期における一次休眠の覚醒期、春
から初夏にかけての環境休眠期、盛夏における二次
休眠導入期、秋から冬の間の二次休眠期、冬期より早
春の二次休眠覚醒期、春から初夏の環境休眠期となり
、以後は二次休眠導入期、二次休眠期、二次休眠覚
醒期の順に経過した。そして、冬から春の間の種子
の死滅は全くなく、生存種子数の減少は、主として春
から夏の間の発芽と土壌発芽によるもので、その減少
程度は1年間に生存種子の約20%が減少したにすぎ
なかった。

乾田と湿田におけるタイスニビ種子の生存状態が
上述のように休眠の覚醒と生存種子数の減少とに後
者において観察に異ならなかった原因は、環境条件が大差な
く、また稲作期間中の土壌水分が同一であるので、主として稲作期間外における土壌水分の差異によるものと考えられる。すでに前報(1)および前項で明らかにしたように、同一温度条件下での土壌水分の差異により、一次休眠および二次休眠の覚醒、休眠覚醒過程における死滅種子の発現は顕著に異なり、低温湿潤土壌中では、一次休眠の覚醒は早いが、二次休眠の覚醒が遅く、しかも種子の死滅がおこらないのに対し、低温乾燥水分土壌中では、一次休眠の覚醒は遅く、二次休眠覚醒が早く、しかも種子の死滅がおこる。本実験の結果は、これらの基礎実験の結果により良く理解される。したがって、秋より春の間の土壌水分の差がタイスニビ種子の生存状態とくにその死滅にきわめて大き
く影響を与えるので、種子の生存期間は乾田ではほぼ
1年半であるのに対し、湿田では3年後でも約半分の
種子が生存している。

4. 考察

タイスニビ種子の休眠覚醒過程における死滅は、休
眠覚醒が進行する条件下で、しかも水分土壌中のみ
においておき、潜水土壌中ではおこらないこと、また
-5℃より5℃～10℃にとくに10℃で著しいことな
どよりみて、この種子の死滅は休眠がほとんど完全に
覚醒しない水分で十分供給され、生理作用が比較的
消失に減衰されることにより引き起こされるものと考えら
れる。種子が死滅する原因としては、種子の体内生理的
な変化や種子外の要因たとえば土壌微生物の作用な
どのあるが、本実験における種子の死滅は主として体
内生理的な変化に基づくものと考えられる。この体
内生理的な変化は、TTCの還元力と発芽力がともに密
接な関係にあることよりみて、脱水素素素素の活力の低
下と関連していることが推察される。

次に本報および前報(1)の実験結果から田面条件下
におけるタイスニビ種子の生存状況を総括すると以
下のようである。稲作期間および潜水条件と、それ以
外の期間は潜水条件で乾田においては、落葉したタイスニビ種子は秋以後の低温条件により一次休
眠の覚醒が進行するが(1)、休眠覚醒からほとんどの終了し
た時期以後において、土温が10℃以下の条件である
と死滅種子が発現する。その後、土温が20℃以上に
なると死滅種子の発現は停止する。また、秋期の潜水
条件下で二次休眠に入った種子は、秋以後の低温条
件で対応し、冬期の低温条件下で再び死滅する。二次休眠種子では、一次休眠種子に比べて低温湿潤水分条件での休眠覚醒が早いので、種子の死滅が進行する条件下におかれる期間が長く、死滅種子の発生は多い。以上のようになって、乾田条件下にお
けるタイスニビ種子は、乾燥後早春にかけて多数の
死滅種子が発現するために、土壌中生存年数が短い。
一方、年間潜水状態の湿田においては、休眠覚醒過程
における死滅種子の発生がほとんどおらないので、
タイスニビ種子の生存年数は乾田にくらべてきわめて長
い。
Physiological and Ecological Studies on Barnyard Grass

(*Echinochloa crus-galli* Beauv. var. *oryzicola* Ohwi)

IV. On the death of seeds in the process of dormancy awakening

Maso Arai and Masuzi Miyahara

(*Central Agricultural Experiment Station*)

Summary

We have discovered that some of the seeds lost their viability in the process of dormancy awakening. Following facts were found concerning this phenomenon.

Dead seeds were found after one month from the beginning of dormancy awakening (either primary or secondary) in the storage within the soil under upland condition (70 to 80 per cent. soil moisture content of field capacity) at low temperature below 10°C (especially 10°C). Dead seeds did not differ from fresh seeds in the morphological appearance of the embryo at earlier time, but its dehydrogenase activity was missing.

However, occurrence of dead seeds in the soil varied according to the temperature and moisture content of the soil. In the storage under any moisture content of the soil at germination temperature and under submerged or air-dry condition at low temperature, dead seeds were not found.

In well-drained paddy fields (submerged condition in rice season, upland condition after rice season), numbers of viable seeds decreased very rapidly during from winter to early spring. In poor-drained paddy fields (submerged condition in the whole year), numbers of viable seeds decreased very slowly because the seeds hardly died in the process of dormancy awakening in winter.

Accordingly, it was well established that longevity of seeds of barnyard grass are longer in poor-drained paddy fields than in well-drained paddy fields.