タバコ根の生長に関する研究

第3報 酸素濃度が伸長生長に及ぼす影響*

長尾照義
（日本専売公社栗野たばこ試験場）

緒言

根の生長に及ぼす通気の影響については古くより繰り返し研究されているが、この場合、根の伸長や能動的な養分吸収にとって必要な空気の有効成分は酸素であることが確認されている。一方、根に対する酸素の供給は作物の生育、収量に多大の影響を及ぼすことが明らかにされている。

ところで、作物物の根の伸長生長と酸素濃度との関係については、かなり多数の植物で研究されたが、通気度の変化の影響に関する研究は少ない。通気度の頻繁な変化は主として土壌水分合量の増減によっ、自然条件に土壌中にはえずける現象であって、場栽培の作物の根の伸長生長にはこれらの変動の影響をたえず受けている。そこで、著者は場条件下における酸素供給の多少およびその変動が根の伸長生長に及ぼす影響を知る手段として、水中栄養素濃度を着目し、その高低がタバコ根の伸長生長にどの程度影響するか、また酸素の適不足によって伸長活性がどのように変化するかを比較検討するため2〜3の実験を行なった。

材料および方法

タバコの品種は主としてブライトエローおよびキサンチを供試し、通し水で育成した10〜11 枚苗の均一個体を供試した。ブライトエローとキサンチを3回繰り返し、根の伸長量に及ぼす影響を比較検討した。

実験結果

1. 第2次根の伸長活性

（1）根長と伸長量との関係：主根（第1次根）より発生した第2次根の伸長長はその時点における根長によって著しく異なることが認められ、根長が長くなるにしたがって伸長量が多くなり、根長が40mm以上になると伸長量がやや低下した（第1図）。

昭和44年3月14日受理
第147回講演会において発表

* 昭和44年3月14日受理
第147回講演会において発表
長尾——タバコ根の生長に関する研究（第3報）

第2図 分級根の様相

第2表 根の種類による根端の細胞分裂および細胞伸長の相違

<table>
<thead>
<tr>
<th>植物</th>
<th>分裂細胞数（1切片当り）</th>
<th>根端からの距離における平均細胞長（μ）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>前期</td>
<td>中期</td>
</tr>
<tr>
<td>A</td>
<td>4.3</td>
<td>1.8</td>
</tr>
<tr>
<td>B</td>
<td>5.9</td>
<td>2.1</td>
</tr>
<tr>
<td>C</td>
<td>1.3</td>
<td>8.3</td>
</tr>
<tr>
<td>D</td>
<td>1.0</td>
<td>4.7</td>
</tr>
<tr>
<td>E</td>
<td>1.4</td>
<td>4.2</td>
</tr>
</tbody>
</table>

このことは、根長が長くなると、新たに分裂に加わる細胞数が少なくなることを示唆している。特に、皮層細胞の伸長が根端より4mmまではA根およびB根のそれらが良好であるが、5mm附近よりは根長の長いものほど、つまり、E根およびD根の細胞伸長が著しく旺盛になることが観察された。

以上の結果から第2次根の伸長活性は長さ40mm前後のごくに達するまで増加し、それ以上の根になるほど低下することが示された。根の伸長を構成する要因である細胞分裂は根長20～30mm（C根）において最も良好であり、細胞伸長は40mm以上（E根）において最大であることが認められた。したがって、根長の相違によって、根端の細胞分裂と細胞伸長の根の伸長生長に関与する順序が異なることがわかる。

すなわち、長い根の伸長は細胞分裂におさまり多く、長い根は細胞伸長によるのであって、両因間での伸長生長に寄与する程度は細胞伸長の方が細胞分裂よりも大きであるといえるようである。

2. 酸素濃度と根の分枝との関係

水中で培養後の6日目における分枝数は第3表に示したとおりである。酸素濃度が高いほど分枝数が多い。よくA・B根およびE根の場合にその傾向が顕著であった。これは、水中の溶存酸素濃度の上昇につれて分枝が早く、総合的に分枝数を増加することを
第3表 酸素濃度による分枝根数の変化

<table>
<thead>
<tr>
<th>酸素濃度 (ppm)*</th>
<th>上位根**</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>0.6</td>
<td>3.0</td>
<td>4.2</td>
</tr>
<tr>
<td>2.3</td>
<td>1.7</td>
<td>2.6</td>
</tr>
<tr>
<td>5.3</td>
<td>2.8</td>
<td>2.0</td>
</tr>
<tr>
<td>7.2</td>
<td>3.3</td>
<td>6.1</td>
</tr>
<tr>
<td>33.3</td>
<td>3.5</td>
<td>5.6</td>
</tr>
</tbody>
</table>

合計: 7.4 8.3 7.6 17.3 25.8 56.5

* 測定時の水温は 25℃ であった。
** 厳密には上位根は基部 1 ～ 2 cm 間に発生した未定根を示し、下位根は主根（第1次根）2 cm 間に発生した第 2 次根を示す。

酸素濃度による分枝根数の変化

示している。しかし、酸素に対する反応性は根の種類によって異なり、下位根は 5 ppm 近くで全く発生しないが、上位根の場合はきわめて低濃度でも分枝した。これらのことから、上位根は下位根よりも不良条件下で発生するという生態的な根の適応性であるように思われる。その理由としては、Horikins らの、タバコ、トマト、大豆等で認めているように分枝に関係のあるホルモンが下位根に移行出来ないために起こった現象と解してよいであろう。

3. 酸素濃度と伸長量との関係

新根の平均伸長量は約 30 mm に達したとき（水中で培養後 10 日目）、培地の酸素濃度を変えて 2 日間処理した後の伸長量を第3図に示した。この実験の結果、第2次根の伸長の最適濃度は 9 ppm であることであった。これは各分枝根とも同一傾向であつて 1 ppm ではかななり減じ、9 ppm という濃度は空気を送った培地での数値であつて、過度に酸素供給を行なった場合も、不足した時には根の伸長が阻害されることが観察された。

4. 連続通気による伸長量の変動

次に、通常通気処理した場合の根の伸長の持続効果について検討した。根の伸長の最適濃度 9 ppm と窒素濃度 1 ppm において実験を行なった。その結果は第4図のとおりである。酸素量の調製時には、伸長効果が長く続くが、酸素欠乏の場合は短い時間で伸長が停止する。分枝根別にみると、C根およびD根など長い根が短いA・B根に比して伸長量の減少が早いが、それほど大きな相違がない。

![第3図 酸素濃度による分枝根の伸長量の変化](image1)

![第4図 通気処理と分枝根の伸長量との関係](image2)

![第5図 酸素濃度・製造の有無が分枝根の伸長量に及ぼす影響](image3)
5. 葉の有無と伸長量との関係
地上部の全葉を摘除した場合において、根の伸長生長がいかなる影響を受けるかを知るために行った実験によると、酸素の豊かな培地では、摘葉によって各分節根ともその伸長量を減ずるが、酸素の少ない培地では葉の影響がほとんど消失してくる（第5図）。このことから、地下深層培地根の伸長生長に好適な酸素濃度におかれた際には、葉の有無が根の伸長に影響を及ぼすものであるようである。この場合、葉の除去によって根の呼吸が減ずると考えられないから、蒸発量の減少によるものと考えられる。

6. 酸素の過不足が伸長活性に及ぼす影響
(1) 前処理の酸素不足と伸長量との関係：水中で培養後10日目に新根が平均20〜30mmに伸長した時、培地の酸素濃度をそれぞれ8.1ppm（24℃）、0.6ppm（24℃）に保つ、1〜4日間処理し、その後8.1ppm（通気）の培地で2日間伸長させて伸長活性を調べた。実験成績は第6図のとおりである。この実験によると、通気前処理の酸素不足によって通気中伸長が阻害されて低下し、伸長前に酸素不足が伸長活性に与える影響や伸長活性にかかわる関係を示しているようである。分節根別にみると、その影響はE根が最大で、ついでD根であり、A根は酸素欠乏による影響が最も少ない。すなわち、若い根は古い根よりも酸素欠乏の影響が少ないといえるようである。

(2) 酸素過不足と根端の細胞分裂・細胞伸長との関係：溶存酸素の高濃度と低濃度の培地で伸長中の根を採取し、永久プランケットを作り、検視した結果を示すと第7図のとおりである。まず、細胞分裂をみると、高濃度下に伸長した根は低濃度下のものに比べて少ない状態が観察された。これらの数値は分節中の細胞に限った調査であるが、別の調査で、根端の全細胞数は前後に著しく多いことを観察した。今回の調査では、なぜこのような様相が観察されたのかとまび

第6図 酸素不足が分節根の伸長活性に及ぼす影響

第7図 酸素過不足が根端細胞の分裂および伸長におよぼす影響
明らかでないが、次の2点が考えられる。その一つは、細胞の分裂周期が異なっているのではないかということもある。多くの植物では、細胞分裂が起こる頻度は日周期の周期があることが知られているから、もし、酸素濃度によって分裂周期が変化すると仮定すると、材料の採取時期を含め高濃度下の根の分裂周期の底に、一方、低濃度下の頂近くに変化した際には分裂細胞数が逆転し、前後の数が後者よりも少なくなることが考えられる。第2番目の理由として、細胞分裂の周期性が顕著でない場合、酸素不足によって細胞分裂の過程を終了するまでに長時間を要するため、分裂像を示す細胞が多く観察されることが考えられる。

次に、細胞伸長は、低濃度下の根は高濃度下のものに比し、根端部で大変速に達するが、酸素の多い時にかなり離れたところにピークを生ずる。細胞長が最大になることは細胞の伸長しきった状態を示すのであろうが、かかる見地からすると、酸素の過剰が最大よりも細胞伸長が問題に大であることが認められる。

上述のように、酸素が過剰な場合、根の伸長にとっては細胞伸長が細胞分裂よりも貢献度が高く、不必要な場合には、細胞分裂がより関与するようである。このことは前進した分裂前根の伸長と細胞の伸長、分裂との関係に類似している。

考 察

主根からの発生した第2次根の伸長活性は長い根ほど高いことが明らかになった。根が短い時期には細胞分裂を盛んに繰り返すが、細胞伸長はまだ低いレベルにあるため、根の伸長は主として細胞分裂によって行なわれる。しかし、根が3 cm 以上になると、細胞分裂の活性が低下する反面、細胞伸長が旺盛になって、根の伸長はむしろ細胞伸長によって行なわれるようになり伸長量も増大する。したがって、根の伸長生長にとっては細胞分裂よりも細胞伸長の方がより重要な役割を演ずるものになる。根の伸長は細胞分裂の頻度が細胞伸長よりも重要な要因であるという報告もあるが、その反対の場合もある。タバコ根の伸長活性は後者の例と一致する。根端生長は一定の連続の過程ではなく、定時に劣ってくともいう。また、最初の維管束細胞の分化の完成位置が根の伸長に関与するともいわれている。タバコの根長が40 mm 以上になると、伸長率が低下するのは維管束細胞が根端近くで分化するためであろう。

根の分裂は酸素濃度が高いほど旺盛であるが、根の伸長量は9 ppm 前後で最適になることが示唆された。根の分裂に対する酸素の影響についての研究結果は必ずしも一致していない。酸素レベルが低い場合、根の分裂が減少するという報告が多いが、分裂数を増加するという観察もある。著者の実験結果は前者に相当するものである。次に、酸素濃度と根の伸長長との関係は絶対における実験結果と一致し、酸素過剰不適が根の伸長を抑制することが認められた。実験用に使用した水には、とりわけ、根の伸長を阻害する要素は存しないはずであるから、酸素が過剰の場合の伸長阻止は呼吸の異常上昇（未発表）により、根の体内成分が減耗し、伸長に必要な物質補給が減少したために生じたものであり、酸素不足の場合の伸長阻止は呼吸障害によるものと解釈する方が妥当であろう。

前処理の酸素不足は根の伸長活性に作用すると思われる。2 〜 4 日酸素不足の状態においてその後酸素供給がなされた場合、根は明らかに反応して伸長量を増大するが、その伸長量は前処理の酸素不足によって抑制されるようである。Geisler は、植物根の伸長力は外部の酸素供給に依存しないと述べている。Geisler の実験の無酸素液は1 l 当り3〜4mg の酸素を含んでおり、ヘドンの根の伸長力を完全に阻止しなかったものと思われる。低い酸素濃度は他の植物で観察されているように、根の伸長を強化させることと伸長活性を劣らせる。タバコはトマトと同じように、茎葉部を通じて根に酸素が供給される形態が認められるので出芽組織が発達しないのが普通であるから、地上部から内部を通じての酸素供給はほとんどないといてよい。したがって、根端の生命を維持するに必要なエネルギーは専ら外部の酸素供給か、あるいは無呼吸によるかはわからない。しかし、無呼吸酸は多量の呼吸酸を消費する一方、エネルギーの生成量を少なくするから、無呼吸酸の能動的根は外部の酸素供給が絶たれると間もなく生命力を失うことになるであろう。

なお、本実験において、Amoore が観察したように、酸素不足の根で分裂細胞数が多い。これは分裂過程が抑制されたために生じたものか、換言すれば、根端の細胞分裂に必要なエネルギーを余は外部の酸素に依存するかどうか問題が残る。今後の検討に待みたいところである。

なお、水に含まれる栄養を含む塩水を培養を行った場合は、栄養に依存するか否か問題が残る。今後の検討に期待したいところである。

注）寒天培地で無菌的に生育したタバコ根では皮層部に通気組織の発達する場合がある。
Studies on the Growth of Tobacco Roots

III. Effect of oxygen concentration on the elongation of roots

Teruyoshi Nagao
(Hatano Tobacco Experiment Station, Hatano, Kanagawa)

Summary

The secondary roots of tobacco seedlings were grown in the water media to which gases of air, oxygen, nitrogen or mixtures of oxygen and nitrogen were bubbled.

The results obtained were as follows:

1. The elongation of root was increased in accordance with the root growth. The frequency of cell division in the meristem was most flourishing in the root 20-30 mm in length, on the other hand, the degree of cell elongation was most conspicuous in the root elongated beyond 40 mm in length.

2. In the O₂-sufficient water media, many lateral roots developed from all length of the root, whereas in the O₂-deficient media, the development of the laterals were restricted to upper part.

3. The optimum concentration of O₂ for root elongation was around 9 ppm and in such a concentration the elongation persisted for long period, but in the media of 1 ppm the elongation
was restricted.

4. In the seedlings grown on the O$_2$-sufficient water media, cutting off of leaves affected the root elongation, the recorded data on the O$_2$-deficient media did not show such a response.

5. Pre-treatment of the seedling with O$_2$-deficient media restricted the elongation of root in comparison to the treatment with O$_2$-sufficient one. The reason would be reduced to the fact that both cell division and cell elongation in the root tip were strongly affected by the influence of O$_2$.