甘しょう塊根の発育に関する研究

深層施肥が塊根収量におよぼす影響*

吉田智彦**・北条良夫・村田孝雄

（農業技術研究所）

緒 言

カリの甘しょう塊根肥大に対する効果は古くから知られており、多くの研究によりその効果が指摘されている。沢野らは土壌中のカリ根の分布様式から、発根後期に、塊根の発生と増大が観察されている。この根の吸収特性を指摘し、カリは吸収の一部で、深層にも施す必要があると述べている。

また、児玉らが根の深根系による下層土の改良と作物の生育収量との関係を調べ、作土中の下層土の混入による影響を中心に、植生と下層土との関係を明らかにし、深根系による土壌物理性の変化に着目し、土壌の物理的構造の差異と作物収量を比較し、土壌容積率の大きい区で、地上部重は標準区に比較して少ないが、塊根重／地上部重の値が増し、このことを認める。

上記の甘しょうの塊根収量に対する深層施肥の効果は収量の増大を伴うと述べられ、その理由として深い根による肥料の吸収、作土の物理性質の向上などが挙げられる。しかし作物群落を中心とした解析は少ないように思われる。

本実験は生長解析法により、塊根収量の増加が、いかなる生長的特徴によってもたらされるかを検討するために行なった。また、その際、塊根の成長は土壌深層に存在する根の根部深発達に大きく関係していることをあわせて検討した。

実験材料および方法

材料には、甘しょう品種カサゲンガンを供試した。本品種は高デンプン、多収性であり、北木での栽培結果では発根 100 号の塊根乾物率は約 27%、カサゲンガンは約 33% である。

供試地は荒川沖積土が客土された褐色土壌地であり、トラクターで 25 cm の深さに耕起し、その

* 昭和 44 年 9 月 12 日受理
** 県九州農業試験場
第 145 回講演会（昭和 43 年 4 月）において発表

実験結果

（1）生育の経過と生態的特徴の変動

全重、各器官重、および LAI などの時期的変化は第 1 表に示す。塊根重は、標準区が生育初期には他の区より大きい値を示す。多肥区の塊根収量は生育初期～中期にかけて他の区より大きさなかったが、生育後期に増大にずれ、収穫期には標準区と同様な値となった。深層区は生育初期～中期は標準区より小さい値であるが、9 月 7 日の第 5 回の採取（以後第 5 回と称する）の他区も同様に大きさの値を示す。10 a あたりの生長収量は標準区 2290 kg、深層区で 2790 kg を示し、深層区で 22% 増収したことがうかがわれる。なお、北木での年度別の収量は約 2000 kg である。

塊根重は深層区でこのように大きい値を示すが、こ
Table 1. Ecological index.

<table>
<thead>
<tr>
<th>Growth stage</th>
<th>Tp</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>5.25</td>
<td>6.15</td>
<td>7.6</td>
<td>7.27</td>
<td>8.17</td>
<td>9.7</td>
<td>9.28</td>
<td>10.17</td>
</tr>
<tr>
<td>Total plant</td>
<td>7.46</td>
<td>14.5</td>
<td>75.2</td>
<td>411</td>
<td>778</td>
<td>920</td>
<td>1090</td>
<td>1210</td>
</tr>
<tr>
<td>(T) (kg/10 a)</td>
<td>7.46</td>
<td>16.4</td>
<td>93.2</td>
<td>405</td>
<td>702</td>
<td>928</td>
<td>1020</td>
<td>1240</td>
</tr>
<tr>
<td>Tuberosous roots</td>
<td>—</td>
<td>—</td>
<td>10.16</td>
<td>71.1</td>
<td>290</td>
<td>497</td>
<td>628</td>
<td>788</td>
</tr>
<tr>
<td>(TR)</td>
<td>—</td>
<td>—</td>
<td>9.19</td>
<td>50.6</td>
<td>136</td>
<td>395</td>
<td>568</td>
<td>788</td>
</tr>
<tr>
<td>(kg/10 a)</td>
<td>—</td>
<td>—</td>
<td>8.82</td>
<td>72.1</td>
<td>246</td>
<td>630</td>
<td>654</td>
<td>922</td>
</tr>
<tr>
<td>Leaf blades</td>
<td>3.70</td>
<td>6.76</td>
<td>35.4</td>
<td>148</td>
<td>146</td>
<td>115</td>
<td>114</td>
<td>105.9</td>
</tr>
<tr>
<td>(L)</td>
<td>3.70</td>
<td>7.34</td>
<td>43.4</td>
<td>140</td>
<td>162</td>
<td>130</td>
<td>123</td>
<td>98.8</td>
</tr>
<tr>
<td>(kg/10 a)</td>
<td>3.70</td>
<td>7.27</td>
<td>27.4</td>
<td>118</td>
<td>137</td>
<td>98</td>
<td>133</td>
<td>97.4</td>
</tr>
<tr>
<td>Stems</td>
<td>3.76</td>
<td>5.75</td>
<td>26.8</td>
<td>186</td>
<td>338</td>
<td>300</td>
<td>340</td>
<td>309</td>
</tr>
<tr>
<td>(S)</td>
<td>3.76</td>
<td>6.40</td>
<td>36.8</td>
<td>210</td>
<td>400</td>
<td>396</td>
<td>324</td>
<td>343</td>
</tr>
<tr>
<td>(kg/10 a)</td>
<td>3.76</td>
<td>6.35</td>
<td>19.6</td>
<td>135</td>
<td>312</td>
<td>241</td>
<td>282</td>
<td>349</td>
</tr>
<tr>
<td>Fibrous roots</td>
<td>—</td>
<td>2.03</td>
<td>2.85</td>
<td>5.45</td>
<td>4.25</td>
<td>8.44</td>
<td>5.06</td>
<td>10.8</td>
</tr>
<tr>
<td>(FR)</td>
<td>—</td>
<td>2.66</td>
<td>3.76</td>
<td>4.71</td>
<td>4.30</td>
<td>6.72</td>
<td>6.53</td>
<td>8.8</td>
</tr>
<tr>
<td>(kg/10 a)</td>
<td>—</td>
<td>2.64</td>
<td>3.06</td>
<td>3.95</td>
<td>4.03</td>
<td>8.49</td>
<td>5.77</td>
<td>10.3</td>
</tr>
<tr>
<td>LAI</td>
<td>0.0830</td>
<td>0.111</td>
<td>1.06</td>
<td>4.49</td>
<td>3.64</td>
<td>3.62</td>
<td>3.58</td>
<td>2.72</td>
</tr>
<tr>
<td>LAD</td>
<td>—</td>
<td>0.5</td>
<td>3.6</td>
<td>17.1</td>
<td>28.0</td>
<td>38.9</td>
<td>49.7</td>
<td>53.7</td>
</tr>
<tr>
<td>(week)</td>
<td>—</td>
<td>0.5</td>
<td>4.5</td>
<td>18.0</td>
<td>30.0</td>
<td>43.6</td>
<td>55.2</td>
<td>59.3</td>
</tr>
<tr>
<td>NAR</td>
<td>—</td>
<td>0.237</td>
<td>0.491</td>
<td>0.471</td>
<td>0.302</td>
<td>0.145</td>
<td>0.161</td>
<td>0.136</td>
</tr>
<tr>
<td>(g/100 cm²/week)</td>
<td>—</td>
<td>0.302</td>
<td>0.572</td>
<td>0.286</td>
<td>0.234</td>
<td>0.177</td>
<td>0.075</td>
<td>0.224</td>
</tr>
<tr>
<td>(L)/(S)</td>
<td>0.984</td>
<td>1.18</td>
<td>1.35</td>
<td>0.796</td>
<td>0.432</td>
<td>0.383</td>
<td>0.335</td>
<td>0.343</td>
</tr>
<tr>
<td>(TR)/(T)</td>
<td>—</td>
<td>—</td>
<td>13.5</td>
<td>17.3</td>
<td>37.3</td>
<td>54.0</td>
<td>57.6</td>
<td>65.1</td>
</tr>
<tr>
<td>(%)</td>
<td>—</td>
<td>—</td>
<td>9.9</td>
<td>12.5</td>
<td>19.4</td>
<td>42.6</td>
<td>55.7</td>
<td>63.5</td>
</tr>
</tbody>
</table>

Note: Dry weights are shown.
Upper, ordinary culture; Middle, heavy manuring culture; Lower, deep plowing culture.
Planting density: 4730 Plants/10a.
Tp: transplanting.
Table 2. N, K and carbohydrate (TR) contents (%).

<table>
<thead>
<tr>
<th>Growth stage</th>
<th>Tp</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>5.25</td>
<td>6.15</td>
<td>7.6</td>
<td>7.27</td>
<td>8.17</td>
<td>9.7</td>
<td>9.28</td>
<td>10.17</td>
</tr>
<tr>
<td>N Leaf blades</td>
<td>5.4</td>
<td>2.8</td>
<td>5.6</td>
<td>4.7</td>
<td>4.2</td>
<td>3.7</td>
<td>3.0</td>
<td>3.2</td>
</tr>
<tr>
<td>N Leaf blades</td>
<td>5.4</td>
<td>3.2</td>
<td>5.6</td>
<td>4.7</td>
<td>4.8</td>
<td>4.1</td>
<td>2.6</td>
<td>2.2</td>
</tr>
<tr>
<td>N Leaf blades</td>
<td>5.4</td>
<td>3.1</td>
<td>5.4</td>
<td>4.8</td>
<td>4.2</td>
<td>3.5</td>
<td>3.1</td>
<td>2.7</td>
</tr>
<tr>
<td>Stems</td>
<td>3.1</td>
<td>2.7</td>
<td>2.6</td>
<td>1.7</td>
<td>1.0</td>
<td>0.9</td>
<td>1.2</td>
<td>0.9</td>
</tr>
<tr>
<td>Stems</td>
<td>3.1</td>
<td>2.3</td>
<td>2.5</td>
<td>1.5</td>
<td>1.6</td>
<td>1.0</td>
<td>1.1</td>
<td>1.0</td>
</tr>
<tr>
<td>Stems</td>
<td>3.1</td>
<td>2.4</td>
<td>2.2</td>
<td>1.2</td>
<td>1.3</td>
<td>1.0</td>
<td>0.9</td>
<td>1.0</td>
</tr>
<tr>
<td>Tuberous roots</td>
<td>—</td>
<td>—</td>
<td>1.3</td>
<td>0.68</td>
<td>0.70</td>
<td>0.57</td>
<td>0.66</td>
<td>0.47</td>
</tr>
<tr>
<td>Tuberous roots</td>
<td>—</td>
<td>—</td>
<td>1.7</td>
<td>0.93</td>
<td>0.78</td>
<td>0.77</td>
<td>0.66</td>
<td>0.60</td>
</tr>
<tr>
<td>Tuberous roots</td>
<td>—</td>
<td>—</td>
<td>1.4</td>
<td>0.69</td>
<td>0.61</td>
<td>0.50</td>
<td>0.52</td>
<td>0.62</td>
</tr>
<tr>
<td>Fibrous roots</td>
<td>—</td>
<td>—</td>
<td>2.1</td>
<td>2.1</td>
<td>1.4</td>
<td>1.0</td>
<td>1.0</td>
<td>0.94</td>
</tr>
<tr>
<td>Fibrous roots</td>
<td>—</td>
<td>—</td>
<td>1.7</td>
<td>2.2</td>
<td>1.3</td>
<td>1.3</td>
<td>1.0</td>
<td>1.26</td>
</tr>
<tr>
<td>Fibrous roots</td>
<td>—</td>
<td>—</td>
<td>1.7</td>
<td>1.9</td>
<td>1.0</td>
<td>1.2</td>
<td>0.8</td>
<td>0.81</td>
</tr>
<tr>
<td>K Leaf blades</td>
<td>3.8</td>
<td>2.5</td>
<td>3.4</td>
<td>2.6</td>
<td>2.3</td>
<td>2.3</td>
<td>2.3</td>
<td>2.5</td>
</tr>
<tr>
<td>K Leaf blades</td>
<td>3.8</td>
<td>2.3</td>
<td>3.1</td>
<td>3.3</td>
<td>2.3</td>
<td>2.5</td>
<td>2.6</td>
<td>2.7</td>
</tr>
<tr>
<td>K Leaf blades</td>
<td>3.8</td>
<td>2.1</td>
<td>3.6</td>
<td>2.8</td>
<td>2.7</td>
<td>2.8</td>
<td>2.7</td>
<td>2.9</td>
</tr>
<tr>
<td>Stems</td>
<td>7.6</td>
<td>3.1</td>
<td>3.9</td>
<td>4.0</td>
<td>1.4</td>
<td>1.6</td>
<td>1.1</td>
<td>1.7</td>
</tr>
<tr>
<td>Stems</td>
<td>7.6</td>
<td>3.1</td>
<td>4.8</td>
<td>5.6</td>
<td>2.8</td>
<td>2.0</td>
<td>1.9</td>
<td>1.3</td>
</tr>
<tr>
<td>Stems</td>
<td>7.6</td>
<td>2.7</td>
<td>4.2</td>
<td>4.8</td>
<td>2.7</td>
<td>2.2</td>
<td>2.7</td>
<td>1.1</td>
</tr>
<tr>
<td>Tuberous roots</td>
<td>—</td>
<td>—</td>
<td>1.7</td>
<td>0.60</td>
<td>0.60</td>
<td>0.54</td>
<td>0.54</td>
<td>0.54</td>
</tr>
<tr>
<td>Tuberous roots</td>
<td>—</td>
<td>—</td>
<td>1.7</td>
<td>0.90</td>
<td>0.70</td>
<td>0.70</td>
<td>0.76</td>
<td>0.80</td>
</tr>
<tr>
<td>Tuberous roots</td>
<td>—</td>
<td>—</td>
<td>2.0</td>
<td>0.94</td>
<td>0.70</td>
<td>0.74</td>
<td>0.80</td>
<td>0.80</td>
</tr>
<tr>
<td>Fibrous roots</td>
<td>—</td>
<td>—</td>
<td>3.0</td>
<td>2.5</td>
<td>1.0</td>
<td>0.50</td>
<td>0.50</td>
<td>0.40</td>
</tr>
<tr>
<td>Fibrous roots</td>
<td>—</td>
<td>—</td>
<td>3.2</td>
<td>3.1</td>
<td>2.3</td>
<td>0.70</td>
<td>0.88</td>
<td>0.70</td>
</tr>
<tr>
<td>Fibrous roots</td>
<td>—</td>
<td>—</td>
<td>2.2</td>
<td>3.0</td>
<td>1.4</td>
<td>0.54</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>C H Tuberous roots</td>
<td>—</td>
<td>—</td>
<td>47</td>
<td>55</td>
<td>63</td>
<td>67</td>
<td>62</td>
<td>68</td>
</tr>
<tr>
<td>C H Tuberous roots</td>
<td>—</td>
<td>—</td>
<td>49</td>
<td>57</td>
<td>58</td>
<td>61</td>
<td>63</td>
<td>66</td>
</tr>
<tr>
<td>C H Tuberous roots</td>
<td>—</td>
<td>—</td>
<td>46</td>
<td>62</td>
<td>59</td>
<td>67</td>
<td>66</td>
<td>65</td>
</tr>
<tr>
<td>D/F Tuberous roots</td>
<td>—</td>
<td>—</td>
<td>16.6</td>
<td>26.4</td>
<td>36.0</td>
<td>35.6</td>
<td>34.0</td>
<td>34.4</td>
</tr>
<tr>
<td>D/F Tuberous roots</td>
<td>—</td>
<td>—</td>
<td>15.9</td>
<td>24.1</td>
<td>28.1</td>
<td>33.4</td>
<td>32.8</td>
<td>31.2</td>
</tr>
<tr>
<td>D/F Tuberous roots</td>
<td>—</td>
<td>—</td>
<td>17.1</td>
<td>25.2</td>
<td>33.1</td>
<td>35.1</td>
<td>34.2</td>
<td>33.0</td>
</tr>
</tbody>
</table>

Note: Upper, ordinary; Middle, heavy manuring; Lower, deep plowing culture.
CH: Carbohydrate.
D/F: (dry weight)/(fresh weight) (%).
れに反し、茎葉重は一般に小さい値を示す。葉身重は第 6、第 7 期で落葉のため各區とも類似した値を示すが、生育の旺盛な第 3～5 期では深層区が小さい葉身重を示している。茎重も同様の傾向を示し、観察によると深層区は生育全期間を通じて常に低值から地表がずいてみられ、LAI も深層区は 3～5 期で小さい値を示している。深層区ではこのように LAI が小さい値を示すのに反し、塊根重は大きい値を示すことから、葉身の単位面積あたり光合成能力 (Pn) の高いことが推定され、NAR は高い値を示している。

葉身重/茎重、塊根重/全重をみると深層区は他の区よりより大きな値を示し、光合成器官が相対的によく発達し、塊根への物質の移行がすくられていることを示すものといえよう。

(2) 養分の吸収とディペンの蓄積

名器官の N, K 吸収率、塊根の炭水化物含有率、乾物重を第 2 表に示す。葉身中の N 濃度はどの区も第 1 期に低下するが第 2 期に再び増加。以後減少するが特に多肥区でその傾向が強く、芽の N 濃度は第 1 期より減少し、生育後期では一定となり各区間の差は少ない。葉身、茎の K 濃度は生育初期中期で多肥区が高い値を示し、後期には深層区の濃度が多肥区より高く、同一区を肥料を表に乗せた多肥区と深層、表層区に施した深層区との差を表わすと推定される。

塊根の N, K 濃度は塊根の肥大初期に大きな値で、後期には一定となる。各區間は標準区の K 濃度が一般に小さい値を示している。可溶性糖度を合わせた炭水化物濃度は、収穫期で各區間の差は少なく、深層施肥栽培による多収でも炭水化物の含有率は低下しなかったといえる。

考 察

NICHIPOROVICH25の提唱する光合成の有効利用係数 (Kec)26は、群落における光合成能の有効利用度を示す一つの指標であり、全乾物収量に対する子実、塊根および地下茎など経済的意味をもつ部分の収量の百分率として考えられる。本実験の場合ではこの値は、塊根重/全重 (TR)/(CT) として表わされ、深層区で最も大きな値を示している。甘ショを多収するためには全乾物重を大きくすることが必要である。一般にそのことにより有効利用係数は低下する傾向がある。26の本実験の範囲では深層施肥栽培区は全重が相対的に高いにもかかわらず、この係数が低下せず塊根に効率よく光合成産物が蓄積し、塊根収量の増加が得られたと考えられる。

Fig. 1. K/N in Tuberous roots.

次に、葉身重/茎重の値は、光合成系と非光合成系との構成比を示すと考えられ、深層区で高い値が認められ、他の区より効率よく地上部の展開をしていることを示している。LAI が深層区で高い値であり、LAI の時間的数値の LAD も深層区で大きい値となっている。したがって、深層区は量的には高い光合成器官によって大きな塊根収量を得ることになる。

体内養分濃度と光合成能力との関係は、葉身 K 濃度、葉身 N 濃度と光合成能力の間に相関があることが知られ、光合成器官の相関が高いとされている24。本実験での葉身の K 濃度は、生育後期において他の 2 区より高い値を深層区が示している。このようなことから、深層区で生育後期まで高い光合成能力を保つことができると考えられる。葉身中の K 濃度が生育後期まで高い値を保つことができたことが期待される。

塊根部の K/N は塊根の肥大度を密接に正に関係があるが、第 1 図に示したごとく、深層区の K/N は常に他の区より大きな値で、深層区での塊根への光合成産物の移行のよいことを示している。

上述したことから、深層区が高い光合成の有効利用係数を示し、これが収量増に結びついた理由として、甘ショ群種における光合成系の発達が、葉身重/茎重の値にみられるような受光適した構造を維持し、比較的高い NAR が得られ、塊根に対する光合成産物の移行が活発に行なわれたこと、そして生育後期まで高い光合成能力を維持し得たことがあげられる。深層施肥栽培区も、これら多収に導く因子を向上させる上で、非常に大きな要因になったと考えられる。

摘要

1. 塊根収量は深層区において生いも重で 22% の増収となった。塊根の発育を葉身重の推移からみると、深層区は生育初期には他の区より劣るが、生育後
吉田・北条・村田——甘じょ塊根の発育に関する研究

期になると増加が著しく、最終的には標準、多肥区にささる収量を示した。
2. 深層区の生育上の特徴は、LAI が生育最盛期で相対的に小さな値を示し、束縛束の発育量も少なかった。また根重も少なく、LAD も小さな値である。
3. NAR および光合成の有効利用係数（塊根重／全重）は深層区が生育全期間にわたり他の区よりも大きな値を示した。また葉身の K 濃度、および塊根の K/N も大きな値を示した。
4. 深層区では、単位面積あたりの光合成能力が高く、かつ光合成産物の塊根への分配が効率よく行なわれたと考えられる。
5. 块根の炭酸化含有率はどの区もほぼ同じ値を示し、深層区での塊根収量の増加は、塊根での炭酸化含有率の低下をきたさなかった。

なお、この論文をまとめるに際して、生理第2科長藤原一雄博士より、細部にわたる御校閲を賜わり、ここに記して厚く御礼申し上げる次第である。

引用文献
7. 渡辺和之・池野敏夫・野村達郎 1966. 土壌の物理性と作物の生育および収量との関係. 第 IV 報 土壌構造の差異が甘藷の二、三の生理的特性におよぼす影響. 日作作 34: 409—412.

Studies on the Development of Tuberous Roots in
Sweet Potato (Ipomea batatas, Lam. var edulis, Mak.)

——The effect of deep placement of mineral nutrients on the tuber-yield of sweet potato——

Tomohiko Yoshida, Yoshio Hozyo and Takao Murata
(National Institute of Agricultural Sciences, Kitamoto, Saitama)

Summary

Studies were made in order to find out the ecological factors on the deep plowing culture of sweet potato. Deep plowing culture was carried out by plowing 25 cm deep, and compound fertilizer was applied to both shallow and deep layers of soil. Nutrients treatments are as follows (kg/10 a): ordinary culture, compound fertilizer (3—10—10) 100; heavy manuring culture, 200; deep plowing culture, 100 (shallow) plus 100 (deep). The ordinary and heavy manuring culture were applied only a shallow layer.

For growth analysis, whole plants were taken seven times every three weeks after trans-planting and divided into each organ. Leaf area was estimated by the leaf punch method and various ecological indexes were calculated from the values of leaf area and dry weights of the
plant. In order to analyze the photosynthetic ability of leaves physiologically, three major elements (N, P, K) and carbohydrate contents were determined.

The results obtained are as follows:

1. Fresh weight of tuberous roots of the deep plowing culture was greater about 22% than the ordinary culture or the heavy manuring culture.

2. LAI at the vigorous stage was the smallest in the deep plowing culture. At the harvest time, LAD of the ordinary, the heavy manuring and the deep plowing culture were 53.7(week), 59.3 and 49.6, respectively. In the deep plowing culture the dry weight of stems (containing petioles) was not so much as other treatments.

3. NAR and \(\langle \text{Leaf} \rangle / \langle \text{Stem} \rangle \) which shows the structural efficiency of the vegetation were generally high throughout the growth stage in the deep plowing culture.

4. The coefficient of the economic efficiency of photosynthesis (\(\text{Keco.}\)) proposed by Nichiporovich and Medinets, is defined by \(\frac{\text{yield (fruits, tuberous roots, etc.)}}{\text{total weight}}\) and indicates how amount of total photosynthates is used for the economic part of a plant. In this experiment, Keco, is \(\frac{\text{TR}}{\text{T}}\) in table 1. Keco. of the deep plowing culture kept high extent throughout the growth stage.

5. It is well known that K content of leaves correlate highly with the photosynthetic ability, and K/N of tuberous roots also correlate with the growth of tuberous roots. Both values of the deep plowing culture were higher than the other two.

6. Total carbohydrate contents were not largely different between the treatments. And high yield culture did not lower the carbohydrate content of tuberous roots.

7. From the results described above, it can be concluded that photosynthetic ability of the deep plowing culture was higher and photosynthates translocated very efficiently into the tuberous roots.