茶葉からの細胞単離とその光合成特性

青木毅
（農林水產省茶業試験場）
昭和53年9月7日受理

従来、茶樹における光合成活性の測定は、全植物体あるいは切り枝を用いて行なわれてきた。しかし、そのような測定では、温度、温度、炭酸ガス濃度及び酸素濃度等、種々の環境条件の維持に多大な努力を必要とし、また困難な場合が多かった。更に、上に述べた環境条件が、それぞれに気孔の開閉など炭酸ガスの拡散抵抗に影響を及ぼすため、切り枝を用いた実験では、環境条件の光合成活性への影響が把握ににくい。

一方、タバコ、ホウレンソウ、マメ、ツムイロコサツ等多くの草本性植物において、生理的活性を有する細胞を単離する方法が報告されている。このような溶液中に懸濁した単離細胞を用いることにより、光合成活性を測定する試薬の設定、維持が容易になる。より直接的な環境条件の光合成活性への影響を研究することが可能となった。

しかし、木本性植物の単離細胞は、クサ、キリ、ポプラ等が例がある。あまり知られていない。今回は、茶葉から細胞を単離する方法を検討し、いくつかの光合成特性を調べた。

材料および方法

1. 培養条件
Camellia sinensis (L.) O. Kuntze 品種やぶきたの2年目生苗を圃場に定植し、そこで2年間、生育させた。6月に開花した新芽（2番茶期）の上から3番目（葉長50〜60mm）の葉を細胞単離の実験に用いた。

2. 細胞の単離
供試葉の中央脈及び周辺部を安全カミソリで取り除き、幅2〜3mmの小片に切った。細胞単離にはタケベ、タケベらの用いたマセローム溶液を以下のように改良して用いた。すなわち、100mlの三角フラスコに、葉の小片1.0〜2.0gに対し、15〜20mlの割合でinfiltration液（0.5%w/v）マセローム（近畿農業大学 K.K.）0.4%w/v, セキソント硫酸加里（膜農業）20mM ソルバッソジ酸ナトリウム、5% 塩酸でpH5.6にしたもの）を加え、60分間、アスピレーターで吸引した。吸引後、上澄液を捨て、15〜20mlの酵素液（infiltration液に1.0Mのソルビトールを加えたもの）に替え、25℃に保った恒温槽で振とうした（振幅9cm, 120rpm）。15分後、上澄液を捨て、新しい酵素液を加えた。更に15分後にうもう一度液を取り替え、30分後の細胞を実験に用いた。マセロームによる単離細胞の膨張変化はクロロフィル量を測定してその日変化とクロロフィルはMackinneyの改良法により定量した。

酵素処理により得られた単離細胞は、洗浄液の50mMトリス塩酸緩衝液、pH7.8、1.0Mソルビトール、0.5M硫酸カリウム、2.0M硫酸カリウム、1.0M塩化マグネシウム）で遠心により2回、洗浄した。洗浄後、単離細胞は洗浄液に5mMジチオシレート（DTT）を加えた液に懸濁し、細水保存した。

3. 炭酸固定速度の測定
単離細胞の炭酸固定的測定は、小試験管（1×8cm）を用いて行なった。反応液（33.3mMトリス塩酸緩衝液、pH7.8、1.0Mソルビトール、0.5M塩化マグネシウム、1.0M塩化マンガン、1.0Mリノン酸カリウム、5mM DTT) 180μlに単離細胞100μl（50μgクロロフィル/ml程度）を加え、照明白5分間置いた後、6.67mM（最終濃度）の14C-重炭酸ソーダ20μlを加え反応を開始させた。反応温度は30℃に保ち、陽光ランプにより40kxの白色光を照射した。一定時間毎に、40%酢酸100μlを加えて反応を止め、一定量を試料皿に載せ、ガスフロカウンター（TDC-4アロカ社製）で14Cの放射能を計測し光合成炭酸固定速度を求めた。

結果および考察

1. 酵素処理時間の検討
茶葉の場合にはタバコ等と異なり、表皮をはがすことができない。そこで、供試葉を幅2〜3mmの小片に切った後、アスピレーターで吸引を行なった。

次に、小片を酵素液で処理すると、すみやかに細胞が単離された。このときの細胞の単離される速度は、振とう速度が速いほど、また容器の大きさに対して酵素液
Fig. 1. Time course of the release of single cells from tea leaves.

次の量が少ないほど液がよく振とうされ、速く単離され
た。しかし、振とう速度を速め過ぎたり、液量が少な
過ぎると泡立ち、単離された細胞が容器の壁に付着し
かえって良好な結果は得られなかった。処理時間に対す
る単離細胞量は第1図に示すとおりであった。タバ
コと同様に2時間目までは直線的に単離され、その後
単離速度は鈍った。収量は2時間で10～15％であっ
た。一方、単離細胞の光合成活性に関して、タバコ
の場合には、30～60分の間に単離された細胞より
60～90分の間に単離された細胞の方が光合成活性が
高いという報告があるが、今回の場合には、処理時間
に伴ない光合成活性は減少し続けた。これは、茶葉が
特に多くポリフェノール化合物を含んでおり、それ
が細胞単離に放出され細胞の不活性化を起こしたと
思われる。そこで、以下の実験では30～60分の間に
単離される細胞を用いるようにした。尚、この期間に
単離される細胞は比較的、損傷を受けておらず、葉肉
細胞が大部分であった。

2. 酵素液の検討
デキストラン硫酸加里濃度は0.3～0.5％のときに

Table 1. Effect of Polyclar-AT (2％) and sodium isascorbate (20 mM) in maceration
medium on the rate of photosynthesis by single cells isolated from tea leaves.

<table>
<thead>
<tr>
<th>Polyclar-AT</th>
<th>Sodium isascorbate</th>
<th>Relative activities of photosynthesis (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>+</td>
<td>100</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>100</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>47</td>
</tr>
</tbody>
</table>

+ or - ･･･ with or without

Fig. 2. Effect of the concentration of potassium dextran sulfate (A) and sorbitol (B)
on the rate of 14CO2 fixation by single cells isolated from tea leaves.

最もよい光合成速度を示した（第2図A）。Takebe
らもタバコを用いて同様の結果を得ているが、本
性のクサ44、キリ、ボブラ45のブロトブラスト単離で
は、濃度1.0％で行なっている。しかし、茶葉では
1.0％の濃度は光合成活性を阻害している（第2図
A）、一方、矢沢46は、クサの細胞単離をデキストラ
ン硫酸加里を用いずに行なっており、デキストラン
硫酸加里の細胞単離に対する役割は、更に検討する
必要がある。

ソルビトール濃度は1.0Mが至適濃度であった（第
2図B）。このように他の例に比べかなり高い濃度を
示した47、48のの、実験に用いた葉が成熟しておら
ず、細胞が脱水不自然のためと思われる。実際、成熟葉（5
月に開業した一箇所用）から単離した細胞の至適ソ
ルビトール濃度は0.4Mであった。

茶葉は細胞の単離操作に有害なポリフェノール化合
物を多く含み、ポリフェノール酸化酵素の活性も高
い49。しかし、Polyclar-ATによるポリフェノール
化合物の吸着除去50は単離細胞の光合成活性に影響し
なかったが、還元剤であるイソアスコルビン酸ナトリ
ウムの場合には、それを酵素液から除くと細胞の光合
速度は対照の47％に低下し、単離細胞の活性維持に
は有効であった（第1表）。

3. 洗浄液および保存方法の検討
洗浄液はServaitesとOgrenの方法51を改良
し、ソルビトール濃度を1.0Mとして用いた。1回の

注1）矢沢盈男（農林水産大学果樹試験場）よりの私
信。
4. 炭酸固定液の検討

炭酸固定液の索リボール濃度は 1.0 M が最適で（第 4 図 A）、酵素液の他の場合と同様にかなり高い値を示したが、成熟葉である単細胞の可溶性ソルビートール濃度は 0.3 M であり、成熟葉である場合より低い値であった。リン酸濃度に対する光合成活性は 1.0～1.5 mM にピークを示し（第 4 図 B）、至適 pH は第 5 図に示すように 7.8 であり塩酸の場合と一致した。また、ジェンスレイトール (DTT) を反応液から除くと光合成速度は対照の 82 ％に低下し、活性保持に効果あることが分かった。マグネシウム及びマンガンに対する光合成活性は第 6 図 A, B に示すとおりであり、エチレンジアミンテトラアミン (EDTA) を加えない方が全般的に光合成活性は高かった。そこで、今回の EDTA を加えず、マグネシウムは 5 mM、マンガンは 1 mM を炭酸固定に関する実験に用いたこととした。

5. 単細胞の光合成特性

光合成速度に対する重炭酸ナトリウム濃度の影響は第 7 図に示すように、重炭酸ナトリウム濃度の増加に伴い光合成速度も上昇し、その後、徐々に速度上昇はおさえられ、約 5 mM の重炭酸ナトリウム濃度で飽和。重炭酸ナトリウム濃度に対する光合成速度

Fig. 3. Photosynthetic stability of single cells isolated from tea leaves. Cells were washed once; ○△, or twice; △△ by washing medium and stored at 0°C; □△, or at room temperature; ●△.

Fig. 4. Effect of the concentration of sorbitol (A) and phosphate (B) in 14CO2 fixation medium on the rate of photosynthesis by isolated single cells.
Fig. 5. Effect of pH in 14CO$_2$ fixation medium on the rate of photosynthesis by isolated single cells.

Fig. 7. Effect of bicarbonate concentration on the rate of photosynthesis by isolated single cells. Inset; double reciprocal plot of photosynthetic rate as a function of bicarbonate concentration.

Fig. 6. Effect of Mg$^{2+}$ (A) and Mn$^{2+}$ (B) in the presence (1 mM, open circle) or absence (closed circle) of EDTA on the rate of photosynthesis by isolated single cells.
種々のことがあり）を用いた結果が \(Q_{\text{eq}} = 1.21 \) であるのでかなり異なっている。この相違は品種間差異の他に、今回の実験では飽和炭酸ガス濃度（6.67 mM）を用いたのに対し、切り枝の実験の場合には空气中の炭酸ガス濃度という不飽和濃度を用いたためであると思われる。すなわち、温度上昇に伴ない細胞の炭酸ガス濃度に対する親和力が減少するため、低炭酸ガス濃度の場合には温度上昇により炭酸ガスが律速的に働くようになり、その結果として温度が上昇しても、光合成速度は増加せず、\(Q_{\text{eq}} \) が 1.21 という低い値を示したものと思われる。他方、高炭酸ガス濃度の場合は、温度上昇により細胞の炭酸ガス濃度に対する親和力が減少しても炭酸ガスが律速的に働くことなく、温度上昇による光合成速度の増加は抑制される。2.5 という高い \(Q_{\text{eq}} \) 値を示したものと思われる。

なお、未成熟果の単体細胞は 20～30 \(\mu \)mol/mg chl/hr の光合成炭酸固定速度を示したのにに対し、成熟期のそれは、約 1/3 の速度であった。この関係は、未成熟果の単体細胞が正常な状態である。成熟果（一番果期）が新果（三番果期）よりかなり低い事実を対応する。この事実から、未成熟果の成熟度は成熟度に近いと考えられる。\(Q_{\text{eq}} \) の値が低いこと、ならびに単体細胞の光合成活性を推定することが可能となり、また、単体細胞は個体群より種々の環境要因の設定が容易にでき、個体群では得ることの困難であった知見が単体細胞を用いることにより得られる可能性がある。なお更に単体細胞の光合成活性を上昇させる方法を検討することとともに、光合成産物等を個体の場合と比較する必要がある。

Fig. 9. Effect of temperature on the rate of photosynthesis by isolated single cells.

Fig. 8. Effect of light intensity on the rate of photosynthesis by isolated single cells.
isolated chloroplasts; polyphenoloxidase in *Beta vulgaris*. Plant Physiol. 24: 1—5.
9. 岩渕 義・中川茂之 1965. 茶樹のポリフェノール成分に関する研究. 第1報 茶樹の各部位におけるポリフェノール成分の分布. 茶技研報 No. 31: 120—124.
17. 酒井慎介・加納照崇・中山 仰・渡辺康正 1965. 茶の光合作用に関する研究. 第6報 外気ガス分析計を用いたガス代謝装置と、それによるガス代謝測定上の諸問題の検討. 茶技研報 No. 31: 10—22.
Single Cell Isolation from Tea Leaves and their Photosynthetic Properties

Satoshi Aoki
(National Research Institute of Tea, Kanaya, Shizuho 428)

Summary

Intact mesophyll cells were isolated from tea (Camellia sinensis) leaves using an enzymatic (macerozyme) technique. About 15% of the leaf cells on a chlorophyll basis from 1 or 2 grams of leaves could be isolated in 3 hours. The optimal concentration of sorbitol was 1.0 M in the case of single cells isolated from immature leaves and 0.4 M in the case of mature leaves. Cells were slightly stable when stored at 0°C.

Cells isolated from immature leaves showed higher photosynthetic activity (20–30 μmoles/mg chl/hr) than that of cells isolated from mature leaves (6–10 μmoles/mg chl/hr).

Photosynthetic rate of cells (immature leaves) was saturated at 5 mM of bicarbonate and the Km(CO2) for cell photosynthesis was about 40 μM. The light intensity at maximal velocity of CO2 fixation was about 40 klx. The optimal pH for CO2 fixation was 7.8 and the optimal temperature was between 30 and 35°C.

These results were discussed in relation to leaf photosynthesis.