夏まき栽培したオオムギの生長解析

吉田智彦
（九州農業試験場）
昭和54年1月31日受理

オオムギを春末に播種することは子実生産を目的とせずに牧草として利用するためには例があるが、春に出穂・登熟させ年に子実を収穫する夏まき栽培は西川らによって開発された。本栽培法は水稲早期栽培の後作となり得ること、赤見病を回避できることなど各種の利点を持っているため広く取り入れられ実用化への研究がなされ始めている。子実収量は25～30kg/ha 程度の値が得られている。本栽培法では冬の低温や春の長日条件を経ないで出穂させる必要があるので、まき性程度の低い、光周期に中性の品種を用いる必要がある。現在までのところ、極早生系統の西海生24号が夏まで栽培して子実を得るのに最も適した品種とされている。

本報告は、生育期間の短いわりに比較的高い乾物生産をあげることのオオムギ夏まき栽培の生長解析を行い、あわせて葉面積指数、光合成速度において検討したものである。以後、夏まき栽培したオオムギを夏まきオオムギと言う。

材料と方法

1. 材料と栽培方法

供試品種は西海生24号で、これは普通栽培用として1974年に九州農試で育成した極早生の二条種の系統である。両親は西海生7号（白花8号×風山5号）とアサヒ5号である。1978年に九州農試（筑後市）の水田転換畑に播種した。播種期は9月1日（早まき区）、9月8日（遅まき区）の2回であった。肥料は基肥として窒素1.0 kg/a を施用した区（追肥区）と、基肥の窒素1.0 kg/a にさらに追肥を窒素0.5 kg/a 施用した区（追肥区）を設けた。これら播種期および施肥量1977年の結果を勘案して決めた。1.2 m おきにかん水溝を設け、その間を18 cm 間隔の条播で5 条に400粒/m² 播種した。追肥は早まき区では9月18 日、遅まき区では9月21日にした。適宜かん水溝に水を入れ播種の気温を防ぎ、葉剤散布により害虫駆除を行った。除草は手取りによった。

2. 乾物生産の調査方法

播種からほぼ2週間おきに8回、地上部のみを採取した。5 本播種した外側の1 本ずつを除き、1 条40 cm の長さに3 条（面積0.216 m²）を2か所から採取した。生育前半の採取では、葉身、および葉緑を含む乾物の3 つの部分に分けて各器官の乾物重を測定し、葉身（緑色部のみ）の葉面積を自己葉面積計で測定した。生育後半の採取では葉とその他の部分の2 つに分け、葉面積は測定しなかった。子実がほぼ完熟に達したとき、5 条播種した外側3 条を3 m の長さ（面積1.62 m²）に2か所所切り取り子実重と全重を測定した。

3. 解析方法

常法により葉身の葉面積指数 (LAI)、体積群生率 (CGR)、相対成長率 (RGR)、乾物生成率 (NAR) を推定した。太陽エネルギー利用率 (Eu) は、

\[Eu(\%) = \frac{4000 \times \text{乾物量}(g)}{\text{全照射放射量}(cal/m²)} \times 100 \]

により推定した。

結果

出芽は早く整いであり、出芽期は早まき区では播種後5日、遅まき区では3日であった。以後順調に生育し、出穂期は早まき区が10月16日、遅まき区の無追肥区が10月22日、追肥区が10月23日、播種後44日と45日目であった。追肥により出穂の遅れる傾向があった。稈長は53～64 cm であり、遅まき区が早まき区よりも、追肥区が無追肥区よりも高かった（第1表）。主稈数数はどの区もほぼ8枚であった。うどんこ病・斑点病・赤見病・いちょう病が若千発生したが被害は認められなかった。アブラムス・ハモグリベ・ハスモンヨウウが寄生したが収量への影響は軽微であった。

第1図に全重と（全重一穂重）の推移を示した。両者に差は見られず、部分は穂重である。全重はどの区も出穂前2週間から出穂後6週間間かって急激に直線的な増加を示した。以後ほぼ一定値となったが、穂発分げつ
<table>
<thead>
<tr>
<th>Sowing date</th>
<th>Heading date</th>
<th>Culm length (cm)</th>
<th>Maturing date</th>
<th>Number of ears (/m²)</th>
<th>Ear length (cm)</th>
<th>Grain weight (kg/a)</th>
<th>Total weight (kg/a)</th>
<th>1000-kernel weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sep. 1 T</td>
<td>Oct. 16</td>
<td>56</td>
<td>Dec. 31</td>
<td>670</td>
<td>6.1</td>
<td>41.9</td>
<td>82.0</td>
<td>43.8</td>
</tr>
<tr>
<td>B</td>
<td>Oct. 16</td>
<td>53</td>
<td>Dec. 21</td>
<td>464</td>
<td>5.8</td>
<td>32.1</td>
<td>60.0</td>
<td>42.5</td>
</tr>
<tr>
<td>Sep. 8 T</td>
<td>Oct. 23</td>
<td>64</td>
<td>Jan. 8</td>
<td>705</td>
<td>5.9</td>
<td>43.4</td>
<td>91.1</td>
<td>43.3</td>
</tr>
<tr>
<td>B</td>
<td>Oct. 22</td>
<td>61</td>
<td>Jan. 4</td>
<td>647</td>
<td>5.8</td>
<td>33.2</td>
<td>67.2</td>
<td>43.3</td>
</tr>
</tbody>
</table>

Note: T means basal dressing+topdressing. B means basal dressing only. Values were estimated by harvesting 1.62 m²×2.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T TW</td>
<td>5.36</td>
<td>64.7</td>
<td>276</td>
<td>452</td>
<td>793</td>
<td>867</td>
<td>850</td>
<td>982</td>
</tr>
<tr>
<td>LAI</td>
<td>0.26</td>
<td>1.28</td>
<td>3.48</td>
<td>2.70</td>
<td>1.45</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>CGR</td>
<td>3.7</td>
<td>15.1</td>
<td>14.7</td>
<td>20.1</td>
<td>6.2</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>RGR</td>
<td>0.156</td>
<td>0.104</td>
<td>0.041</td>
<td>0.033</td>
<td>0.007</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>NAR</td>
<td>5.80</td>
<td>6.86</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Eu</td>
<td>0.49</td>
<td>1.75</td>
<td>1.99</td>
<td>3.17</td>
<td>1.16</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>B TW</td>
<td>5.36</td>
<td>57.9</td>
<td>269</td>
<td>423</td>
<td>602</td>
<td>677</td>
<td>742</td>
<td>748</td>
</tr>
<tr>
<td>LAI</td>
<td>0.26</td>
<td>1.02</td>
<td>3.30</td>
<td>2.03</td>
<td>0.43</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>CGR</td>
<td>3.3</td>
<td>15.1</td>
<td>12.8</td>
<td>10.5</td>
<td>6.3</td>
<td>4.6</td>
<td>0.5</td>
<td>—</td>
</tr>
<tr>
<td>RGR</td>
<td>0.149</td>
<td>0.110</td>
<td>0.038</td>
<td>0.021</td>
<td>0.010</td>
<td>0.007</td>
<td>0.001</td>
<td>—</td>
</tr>
<tr>
<td>NAR</td>
<td>5.91</td>
<td>7.6</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Eu</td>
<td>0.43</td>
<td>1.75</td>
<td>1.75</td>
<td>1.66</td>
<td>1.20</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T TW</td>
<td>21.9</td>
<td>119</td>
<td>407</td>
<td>679</td>
<td>—</td>
<td>1167</td>
<td>1157</td>
<td>1195</td>
</tr>
<tr>
<td>LAI</td>
<td>0.56</td>
<td>2.89</td>
<td>6.13</td>
<td>4.73</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>CGR</td>
<td>6.5</td>
<td>24.0</td>
<td>19.4</td>
<td>16.8</td>
<td>—</td>
<td>—</td>
<td>2.7</td>
<td>—</td>
</tr>
<tr>
<td>RGR</td>
<td>0.113</td>
<td>0.102</td>
<td>0.037</td>
<td>0.019</td>
<td>—</td>
<td>—</td>
<td>0.002</td>
<td>—</td>
</tr>
<tr>
<td>NAR</td>
<td>4.56</td>
<td>5.57</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Eu</td>
<td>0.77</td>
<td>3.05</td>
<td>2.96</td>
<td>2.85</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>B TW</td>
<td>21.9</td>
<td>114</td>
<td>357</td>
<td>690</td>
<td>850</td>
<td>1070</td>
<td>1013</td>
<td>1065</td>
</tr>
<tr>
<td>LAI</td>
<td>0.56</td>
<td>2.90</td>
<td>4.17</td>
<td>4.16</td>
<td>2.06</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>CGR</td>
<td>6.1</td>
<td>20.3</td>
<td>23.8</td>
<td>11.4</td>
<td>14.7</td>
<td>—</td>
<td>3.7</td>
<td>—</td>
</tr>
<tr>
<td>RGR</td>
<td>0.110</td>
<td>0.095</td>
<td>0.047</td>
<td>0.015</td>
<td>0.015</td>
<td>—</td>
<td>0.004</td>
<td>—</td>
</tr>
<tr>
<td>NAR</td>
<td>4.32</td>
<td>5.79</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Eu</td>
<td>0.74</td>
<td>2.58</td>
<td>3.62</td>
<td>1.89</td>
<td>2.54</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Note: Values were estimated by harvesting 0.216 m²×2. TW=total weight (g/m²), CGR (g/m²/day), RGR (g/g/day), NAR (g/m²/day), Eu=the efficiency of solar energy utilization (%). T means basal dressing+topdressing. B means basal dressing only.

の期に登熟を続けたものがあったため全体の完熟期の判定がやや困難であった。穂重は出穂後急速増し5月12月になると増加の程度は小さくなった。第1表に収量調査の結果を示す。完熟期は11月21日をもって1月8日で追肥では無追肥区より遅れた。穂数は464〜705本/m²、穂長は5.8〜6.1cm、千粒重は42.5〜43.8gであった。これらの値は普通栽培による値と大差なかった。子実収量は32.1〜43.4kg/a、全重は60.0〜91.1kg/aで、無追肥区は追肥区より、遅き区は早き区より子実重が高かった。これに近蒸の増加傾向と一致し、子実重は穂数によるところの大きいことを示した。全重の値（1.62 m²の2か所
吉田——夏まき栽培したオオムギの生長解析

刈取りによる値は 0.216 m²の2か所刈取りによる最後の採取のときの値の75.8%（4区平均）になった。その後の採取から完熟までの間に枯死する部分はほどんどなかった。0.216m²の刈取りのときは播種されなかった部分は除いて採取したので、広い面積で播種を含めて採取した場合より値が高くなった。かん水溝の面積も考慮すれば値は当然さらに低下する。

第2表に乾物生産・生長成長の結果およびEuについて示した。これらの値は0.216m²刈取りによるものである。NARは出穂前の期間について推定した。Euは全重のほぼ最大に達した早まき区の9月24日、遅まき区の10月1日までの期間について推定した。遅まき区の出穂区で11月17日の値が最高であったので、CGR・RGR・Euは11月2日から12月1日の期間について推定した。LAIは穂期後期に最大となり3.30～6.13の値となった。出穂以後LAIは低下した。これは主に下位葉が枯死したためとパラモリノコの食害が若干あったためである。生育期間は短いか全重はかなり大きく、CGRの最高値は遅まき区の追肥区で24.0（g/m²/day）、無追肥区で23.8、早まき区の追肥区で20.1、無追肥区で15.1と高い値であった。全重が直線的に増加した遅まき区の10月7日から12月1日の間の平均CGRは追肥区が19.1、無追肥区が17.4、早まき区の9月30日から11月24日の間の平均CGRは追肥区が14.6、無追肥区が11.3であった。遅まき区の播種から12月1日までの間（84日間）の平均CGRは追肥区が13.9、無追肥区が12.7であり、早まき区の播種から11月24日までの間（84日間）の平均CGRは追肥区が10.3、無追肥区が8.1であった。RGRの出穂までの値はきわめて高く、1日に10%前後の生長率であった。以後RGRは低下傾向にあったが、それでも出穂後もかなり高い値で推移した。NARは出穂前の値で4.32土7.76（g/m²/day）であった。RGRやNARの処理区間の差の傾向は明確でなかった。

Eu（%）は、全穂数発生量（cal/m²/day）と平均気温の推移を第2図に示した。Euは播種直後は小さな値だったが以後急増した。遅まき区の10月7日から12月1日の間の平均 Euは追肥区で2.93%、無追肥区で2.67%、早まき区の9月30日から11月24日の間の平均 Euは追肥区で2.11%、無追肥区で1.63%であった。播種から84日間の平均 Euは遅まき区の追肥区で1.99%、無追肥区で1.82%、早まき区の追肥区で1.40%、無追肥区で1.09%となり、遅まき区は早まき区より、追肥区は無追肥区より高い Euの値であった。

考 察

オオムギの発芽の最適温度は24～26℃で、苗枠の生育の最適温度は20℃とされている。秋まき、春まき栽培での発芽や生育初期の間の値はこれらの値よりもかなり低い。夏まき栽培では播種直後の気温が

Fig. 1. The changes in growth of barley sown Sep. 1 and Sep. 8
—— : total weight. —— : (total - ear) weight. × : basal dressing+top dressing.
○ : basal dressing only. ↑ : heading date.
なり高さが以後次第に低下して（第2図）葉の生育にとって適温となる。このためかなり高い乾物生産を得ることができ、全重の大部分が成熟前と大きく子実収量は32.1〜43.4 kg/haであった。この子実収量の値は生育期間の短いことを考慮するとかなり高いと言える。12月になると穂重の増加程度が減少した。西川は平均気温が10℃以下になると穂重の增加が著しくなるとしている。本実験でも平均気温は12月になると10℃以下に変わり西川の知見と一致した。

武田は二条オオオウ（品種アズマゴールデン）を秋まきして最大LAIが3.64〜6.17、最大CGRが26.7〜27.7 (g/m²/day)、最大RGRが0.206〜0.230 (g/g/week) (1日単位では0.029〜0.033)、六条オオウ（品種オサノオウ）の秋まきで葉身以外の器官の光合成を考慮して葉身のみによるNARを推定し、最大57.1 (g/m²/week) (1日単位では8.16) の値を得ている。本実験での二条オオオウの秋まきの結果と比較すると、LAIやCGRは秋まきの場合に匹敵する値であり、特にRGRの高いことが特徴となっている。NARは秋まきの最大値より小さく、かつ本実験での推定値は葉身以外の光合成を考慮していないので過大評価されているが、それでもNARはかなり高いと言える。よって夏まき栽培では生育の初期に高温下で高いNARを保つ、高いRGRで急激な生育を促し、秋まき栽培における春の生育と同様に盛んな生育をしたのである。出穂以後LAIは減少したが、千粒重は大きないので穂の光合成はあまり活発でなく成熟後と同様、生育初期の急激な生育と出穂以後の穂の光合成により短期間に高い全重や子実収量が得られたものと考えられる。

本実験での播種率は114日間（出穂後39〜40日迄）の平均CGRの値が（8.1〜13.9）で、日本各地の多収イネで得られた値の9.26〜12.26（播種から収穫期の間の値）と匹敵する。ただし夏まきオオウの出穂後40日位では子実の水分含水量はかなり高い。子実の収穫目標とするときは出穂後早生区で66〜76日、遅生区で74〜77日完熟まで要し、普通栽培よりもかなり長い発生期間であった。上記のイネの場合と収穫期までの比較をすると当然夏まきオオウのCGRは低下する。

Euはイネの生育期間で1.12〜1.71%で、1.24〜1.35%程度の値が報告されているが、村田は日本各地での数種作物の生育期間の乾物生産の高値値から推定した生育期間の平均Euは、イネで1.26〜1.58、トウモロコシで1.29〜2.18、ダイズで0.77〜1.02である。最大CGRを得たときのEuは、イネで1.98〜3.17、トウモロコシで3.43〜4.55、ダイズで1.34〜4.36である。夏まきオオウの全重が急増的に急

Fig. 2. The changes in mean temperature, solar radiation and the efficiency of solar energy utilization (Eu) of barley sown Sep. 1 and Sep. 8

×——× : basal dressing + topdressing,
○——○ : basal dressing only. Temperature and solar radiation were measured by agricultural meteorology staffs in Kyushu Natl. Agric. Exp. Stn.
摘 要

オオムギ夏まき栽培の生長解析を行った。また太陽エネルギーの利用率について検討した。

1. 9月1日と8日に極早生系統の西海皮24号（二種）を播種した。圃場は適宜乾燥した。出芽は速かであり播種後44〜45日で出穂した。出穂前2週間から出穂後6週間において全重は急激に増加した。播種後84日で全重は最大値にほど近くなった。12月になると全重の増加は緩慢になった。年間は53〜64cmであり、12月下旬〜1月上旬に子実はほぼ完全に達した。総数、総長や千粒重の値は大きく、全重は60.0〜91.1kg/ha、子実重は32.1〜43.4kg/haであった。9月8日までは9月1日までの追肥をしたもので不適当な生育力が高かった。

2. LAIの最高値は3.30〜6.13であった。全重が急激に増加した期間の平均CGRは11.3〜19.1（g/m²/day）であった。播種後84日間の平均CGRは8.1〜13.9であった。太陽エネルギー利用率（Eu）は全重が急激に増加した期間の平均で1.63〜2.93％であった。播種後84日間の平均Euは1.09〜1.99であった。いずれも9月8日までが9月1日まきより、追肥したもののが無追肥よりも高価値が大きかった。RGRはかなり高い値で、特に出穂前には1日10％前後の値であった。NARは出穂前に4.32〜7.76（g/m²/day）であった。

3. これらの値は他の生産業や普通栽培したオオムギの豊かな生育をしているときの値に匹敵するものであった。よって夏まきオオムギは太陽エネルギーを効率良く利用し、統合化を高く保ち、高い生育率で生育し、比較的に乾燥生産を短期間に行うことが明らかになった。

謝 辞

本論文のとりまとめて行った。栃木県農試栃木分場武田元吉博士、九州農試作物研究第一部鈴木守主任研究官より貴重な助言を賜わり、厚く御礼申し上げる。

引 用 文 献

1. 奥 一八・三好祐二・吉田智彦 1979. 飼料用夏まき栽培と利用。畜産の研究 33: 315〜320。
2. 江藤博文・梅木良佐・梅本 明 1977. 秋大豆の早期水稲栽培について（予報）。農業研究 39: 38。

注2) 宮崎県総合農業試験場 昭和52年度 成績概要
11. 麦の生理・生態・稲作. 東京. 78. による.
Growth Analysis of Late-summer Sown Barley

Tomohiko Yoshida

(Kyushu Natl. Agric. Exp. Stn., Chikugo, Fukuoka 833)

Summary

1. Extremely early maturing barley, Saikai-kawa 24, was sown Sep. 1 and Sep. 8 in 1978 at Kyushu Natl. Agric. Exp. Stn., Chikugo, Fukuoka. Seed rate was 400 kernels/m². Seed was drilled. The distance between the rows was 18 cm. The field was irrigated occasionally. Plants grew vigorously. Grain matured and was harvested in late Dec.—early Jan. Aphid, leaf miner and cutworm were controlled by insecticides. No serious diseases were observed. The area of 0.216 m² (3 rows×40 cm length)×2 were harvested every 2 weeks excluding roots and the changes in the growth were traced.

2. Seed germination and seedling establishment were good. Plants headed 44-45 days after sowing. Culm length was 53-64 cm. Total dry weight (excluding roots) estimated by harvesting 1.62 m² (3 rows×3 m length)×2 was 60.0–91.1 kg/a and grain weight was 32.1–43.4 kg/a (Table 1). Total weight increased rapidly from 2 weeks before heading to 6 weeks after heading. On 84 days after sowing (Sown Sep. 1: Nov. 24, sown Sep. 8: Dec. 1), total weight was near to the maximum value (Fig. 1). Plants sown Sep. 8 grew better than those sown Sep. 1. Plants topdressed (basal dressing, 1.0 kg nitrogen/a, plus topdressing, 0.5 kg nitrogen/a) grew better than those not topdressed (basal dressing 1.0 kg nitrogen/a, only).

3. Maximum LAI was 3.30–6.13. Mean CGR during the rapidly growing period (Sown Sep. 1: Sep. 30—Nov. 24, sown Sep. 8: Oct. 7—Dec. 1) was 11.3–19.1 (g/m²/day). Mean CGR of 84 days after sowing was 8.1–13.9. NAR before heading was 4.32–7.76 (g/m²/day). RGR before heading was 0.095–0.156 (g/g/day) (Table 2). The efficiency of solar energy utilization (Eu) was estimated calculating (dry matter production×4000 cal/g)/(solar radiation). Mean Eu during the rapidly growing period was 1.63–2.93%. Mean Eu of 84 days after sowing was 1.09–1.99% (Fig. 2). LAI, CGR and Eu values of plants sown Sep. 8 or topdressed were higher than those of plants sown Sep. 1 or not topdressed.

4. The values of CGR, RGR, NAR and Eu of late-summer sown barley were nearly as high as those of other high yielding summer crops and rapidly growing winter barley. It is concluded that the high dry matter production of late-summer sown barley was obtained because of the high growth rate resulting from the efficiently utilized solar energy and the high net assimilation rate from the beginning of the growth.