イネの穂および分げつ体系における分枝構造の形態形成論的研究

松葉捷也（農林水産省　中国農業試験場）

Morphogenetic mechanism of branching systems in rice plants

Katsuya MATSUBA(Chugoku Natl. Agr. Exp. Sta.)

１．小穂における分枝構造とその形成機構

イネの小穂を構成する諸器官の組立て、つまり小穂内の分枝構造の問題には異説が多い。著説は、内穂の本性に関して大きく二派に別れる。一つは、イネの内穂を、外穂の腋からの分枝に著者をのぞむ真の内穂（palea）であるとみると、これはイネ科の比較形態学的研究に基づいている。しかし、イネの内穂の形がイネ科の内穂としては特殊であることから、他は、この穂も外穂と共に小穂軸に乗てってその腋に花を抱く花穂（lemma）であるとみるようになった。つまり、この二つの小花が進化途上で複合して現在の小花になっていると考え、その先祖返りの例証に奇形小穂の構造を挙げている。

この問題解決のために、木穂17品種を用い、それぞれの幼穂形成初期にジペレリン水溶液を根に投与して誘発させた各種の奇形小穂の構造を分析し、新たにその形成機構を考察するとともに、その結果を小穂の維管束走行の比較解剖で確認する方法をとった。その結果、これらの奇形小穂は、第１図に示した完全２小花構成の小穂モデルの変型として系統的に把握することができた（第２図 2-5）。このモデルの下位小花が正常小穂の小花に対応する。両者の小花が共に小穂基部から第５節目で発生することが、枝梗に対する奇形小穂と正常小穂の着生方向の比較によって判明したからである。ここから次の２点が導かれた。①正常小穂的小花は単一小花であり、その小穂軸の先端は退化して無形構造になっている（第２図 1）。②この退化に対応する小穂原基の頂端分裂組織（以下、頂端と略す）の退化が進むと、そこで第２の外穂原基が分化すると、2小花型の奇形小穂（第２図）が出現する。これは小穂原基の貫生によるものであるが、先祖返りの例証になるものではない。

この結論は、小穂の維管束走行の比較解剖によって裏付けられた。しかし、内穂の維管束走行には解明すべき点が残されている。また、小穂軸先端の退化に対応する小穂原基頂端の退化は、組織レベルのみではなく生理レベルまで広く考える必要がある。

２．分げつ体系および穂における分枝構造とその形成機構

１．分げつ体系の分枝構造とその完全展開型モデル

分げつ体系の構造に関して、片山（1951）は理論的に完全に分げつが出現した個体のモデル（「標準株」）を示した。これとは別に、八柳ら（1951）は圃場における分げつ増加
第1図 完全2小花構成の小穂モデル
l₁ : 外巻 (下位外巻), l₂ : 上位外巻
p₁ : 内巻 (下位内巻), p₂ : 上位内巻

第2図 正常小穂と奇形小穂の外形と構造

第1表 イネの個体における一次, 二次, 三次各最終分け目の出現様相 (品種: コヒカリ)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1* 2 3 4 5 6 7 8</td>
<td>1 2 3 4 5 6 7 8</td>
<td>1 2 3 4 5 6 7 8</td>
<td>1 2 3 4 5 6 7 8</td>
</tr>
<tr>
<td>15* 15 16 16 16 16</td>
<td>15 16 16 16 16 16</td>
<td>15 16 16 16 16 16</td>
<td>15 16 16 16 16 16</td>
</tr>
<tr>
<td>最終分け目</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>17</td>
<td>0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>26</td>
<td>0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>35</td>
<td>0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>44</td>
<td>0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>53</td>
<td>0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>62</td>
<td>0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>71</td>
<td>0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>8p</td>
<td>0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>2p5</td>
<td>0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>214</td>
<td>0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>223</td>
<td>0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>232</td>
<td>0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>241</td>
<td>0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>25p</td>
<td>0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>3p4</td>
<td>0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>3p2</td>
<td>0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>311</td>
<td>0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>322</td>
<td>0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>331</td>
<td>0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>34p</td>
<td>0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
</tr>
</tbody>
</table>

注) *: 供試個体の番号。*: 主要枝数。
+: 腕, (一)=, =, =は, それぞれ腕枝より1節上, 1節下, 2節下, 3節下に出現した最終分け目を示す。

第2表 イネの個体における分けつ次位別・一次分けつ出現時の分類別次位分裂数

<table>
<thead>
<tr>
<th>分けつ次位</th>
<th>主要枝数</th>
<th>一次分けつ出現時* (果実数を示す)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5 6 7 8 9 · · · n</td>
<td>次位分けつ数</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1 2 3 4 5 6 7 8 · · · (n-1)</td>
<td>[\frac{1}{2}] n(n-1)</td>
</tr>
<tr>
<td>3</td>
<td>1 3 6 10 15 21 28 · · ·</td>
<td>[\frac{1}{3}] n(n-1)(n-2)</td>
</tr>
<tr>
<td>4</td>
<td>1 4 10 20 35 56 · · ·</td>
<td>[\frac{1}{4}] n(n-1)(n-2)(n-3)</td>
</tr>
</tbody>
</table>

注) *: 実際の分けつ体系においては果実数を示す必要がある。例えば、一次分けつ出現が第9節で終わった場合、本表の「1」が第8節に当り、「9」が第1節に当る。

--- 303 ---
の経過を分析するために、個体における分け目の増加バターンに一つのモデルを仮定した。両説によれば、分け目の体系の構造を規定する最終分け目は、一次最終分け目が9の場合、それぞれ第1表の右端、左端 - 部分的表示であるが - のようになる。
片山（1951）と同様に、直接・1株1本立て、基肥のみで育てた個体の全茎について出葉期調査を行ったところ、八枠の仮定を実証する結果となった（第1表）。最終分け目の節位は、「標準株」で指定されている節位において、一般にn次分け目上ではn節に規則的にずれていた。これを理想化して描いた分け目の体系に基づくと、第2表が得られる。この表から分るとおり、主軸を含めた個体の最大分け目の数は、一次最終分け目の節位（n）に応じて決まり、一般に理論的な最大分け目の数（Tmax.）は、

\[T_{\text{max}} = 2^n \]

となる。本試験の結果は通常の分け目の抑制要因がないところから、一般に一次最終分け目のnの場合に、第2表を用いる理論分け目の体系は、完全展開した分枝構造をもとと考えた。

なお、同一条件下で一次最終分け目の節位は品種により異なるが、品種内での個体変異は極めて小さいので、これを分けつ力の遺伝的な一指標と考えた。

2．一次枝梗穂の形成過程およびその完全展開型モデル

穂の分枝構造の分析に当たり、一次枝梗の、穂軸の着生部からその先端までを中心軸とみた穂「一次枝梗穂」と規定した。

一次枝梗上で、先端の小穂以外の各小穂は外穎を一次枝梗に向け、かつ先端の小穂とそのすぐ下の小穂とかほほ同方向を向く。まず、この規則性を手がかりに一次枝梗穂の形成過程を分析して、第3図の花式図を得た。ここでは、1の①に述べた小穂の無限構造の知見の外、枝梗上の苞とその枝梗先端の小穂の各穂（内穎を除く）は連続的に互生するとみる観点が前提である。従ってこの図は、小穂の副穎から外穎までの穂、条件さえあれば枝梗を発生させる苞も含むという見方を含む。また、先の発生次位に着目して、一次枝梗先端の小穂を一次小穂に、また二次枝梗先端や二次枝梗上の小穂を二次小穂に分類できる。この分類法は、片山が分けつの識別用に用いた方法と同じである。以上により、穂と分け目の体系双方の分枝構造が共通的に分析できる。

次に、ジベレリン処理によって小穂数が著しく増し、特に二次枝梗が多くなることが知られていたので、1に述べたジベレリン処理区の穂を対象として、一次枝梗穂の分枝が最大どこまで展開し得るのか思考実験的に調べた。品種によって分枝展開の様相は異なったが、その方向性において第4図に示したような傾向を認めた。この図から、aの分枝形成は、

\[\text{bやcに比べて抑制されていると推定される。この図の方向性の延長上で抑制が全くなくな

かった場合を考えると、完全展開した円錐花序型モデル（第5図a）が得られる。なぜなぜ、これ以上の分枝増加は集散花序の分枝型（第5図b）への転化をもたらしてイネ科の穂の分枝構造から外れるからである。文後するように、各種の一次枝梗穂はこの完全展開型モデルの変型として系統的に把握することができた。

この完全展開型モデルは、いわゆる自己相似性をもち、分枝の開度を問わなければ、先述した分け目の体系の完全展開型の分枝構造と同じ構造をとる。従って、一次枝梗穂の最大小穂（穂）数も第2表と同様の数式で求めることができる。

3．穂型の種類とその系統的把握および穂の完全展開型モデル

本研究の「穂型」は、穂の各一次枝梗穂を穂軸の左右に等間隔で交互に、かつ穂軸に垂直に図示し、また二次分枝も等間隔に図示した時の、一次枝梗の数と、各一次枝梗穂の二次分枝の数、この二要素で決定される穂の輪郭を平面図形に近似した型である。
第3図 イネの一次枝稜稜における小稜の配列関係

注）枝稜の第n番目の稜に着生した一次枝稜稜を対象とした。図陰では、一次枝稜稜の第1稜は右側にある。図の中央のn−8～n−12で一次小稜が形成されている。その左右斜めには延びる稜上の小稜が二次小稜で、他は二次枝稜稜に着く三次小稜である。

b. : 分枝（退化する）。なお、先端の一次小稜に対する稜はnである。
a. : 小稜の退化先端 [外観上は見えない]
P1B : 一次枝稜稜（一次小稜の小稜稜）の退化先端 [外観上は見えない]

第4図 ジベレリン処理による一次枝稜稜の分枝展開の方向性

注）二次分枝数が7の場合で図示した。

第5図 円錐花序の完全展開型モデルと集散花序の分枝型モデル

...
32種の内外稈あるいは前述したジペリシン処理区で穗型を調べてみたところ、通常の穗型はその上部が等脚台形で下部が長方形に見える台方型であったが、この外に基本的な4種類（第6図参照）の穂型がみとめられた。
これらの穂型は、三つの機構の存在を仮定すると系統的に把握することができた（第6図）。まず、イネの祖先の穂はイネ科に典型的な円錐花序であったと考えると、二等辺三角形型の穂型が得られる。この穂型をもとめ、かつ各一次枝梗塩の分枝構造が2に述べた完全展開型になり得る穂のモデルは、第2図aの完全展開型モデルもしくぶって、これが穂自身の完全展開型モデルにもなると考えた。次に、後述する頂芽性の機制により、幼穂の下位枝梗塩の生長が抑制されること、元来は二等辺三角形型である穂型の内側が未形成に終わったと考えた。さらに、松島ら（1956）が発見した幼穂原基その端部の生長停止が二等辺三角形型の穂型上部の欠落をもたらすと考え、これを分枝の「停止機構」と位置づけた。なお、前二者の形成機構の根拠は以下に述べる。

4. 分げつ体系および穂の分枝構造の形成機構
まず、完全展開型の分枝構造の形成を以下のように考えた。
先述した出芽期調査の結果から、各分けつ数の葉数は原則として「同伸葉理論」の理論葉数に比べて、それぞれの分けつ数比と同じ数だけ多くなることが明らかになった。つまり、一般に分けつ数の葉数（前出葉を含む）は、分けつ数の出现筋数より上の母茎の葉数と同じになっている。この事実に基づき、かつ尾田（1960）の見方を参考にして、各茎の頂端には生理的絡もという性質があり、それは分化可能な葉原基の数で規定され、葉原基分化のたびに1輪老熟するものと推定した。しかし、ある母茎の頂端で第n葉原基が分化したその時の頂端の生理的絡か、そのまま、しばらく後に第n葉原基の葉脈に分化する分けつ原基に受けられるといった、この生理的絡の等価受授仮説には、茎の頂端組織の分身が葉脈部に「分離分裂組織」として保存されることの植物組織学上の間接的根拠がある。上述の等価受授が、全ての母茎・分けつの頂端間で行われたとして思考実験を試みると、完全展開型モデルと同じ枝梗構造が導かれるので、基本的に分けつ体系の分枝構造（第1表）の形成が説明できることになる。ただし、全ての母茎・分けつで、それぞれの出芽筋数における一一定数の節と無分けつ節（穂では小穂部分に相当）になるという要件を置く。穂における完全展開型の分枝構造の形成も同様の機構で説明される。
次に、各種の穂の形成に関しては、生理的絡の等価受授（分枝の「展開機構」といえる）の外に、枝梗原基の生長を頂芽性誘的に抑制する機構（分枝の「抑制機構」といえる）の存在を仮定した。その根拠は、幼穂形成初期に下位枝梗塩の生長が遮れて枝梗基間で分化と生長の順序が逆転する事実（松島ら，1956）や先述したジペリシン処理による穂の多枝梗誘発現象を求める。この二つの機構の対立的関係によって各種の一次枝梗の分枝構造の形成（第7図）が、またこの対立的関係に、3で述べた分枝の「停止機構」の関与を考えると、各種の穂型の形成（第6図）が、それぞれ矛盾なく説明された。この二つを総合し、後者を第1段階、前者を第2段階として、穂全体の分枝構造の形成が統一的に説明された。

本研究は、名古屋大学、野菜試験場（現野菜・茶業試験場）、北陸農業試験場、中国農業試験場で行われた。この間、御指導と御協力をいただいた方々に深く感謝する。なお、Ⅱ・2以降の内容は中国農業試験場研究報告第9号（1991）に詳述した。

—306—
第6図 イネの種型の形成機構（仮説）

注）破線の内側部分は器官形成の抑制部分を示す。また、黒みの部分は幼穂の頂端分裂組織の生長停止による欠落部分を示す。

第7図 イネの一次枝穂の分枝構造の形成機構（仮説）

注）a, b, cの三角形は、一次枝穂の完全展開型モデル（第5図 a）の二次元の型を示す。それぞれの破線の内部が器官形成の抑制部分である。髄芽による抑制が直接に及ぶ範囲は、a ではすべて、b, c では破線の内部のうち、上位の二等辺三角形部分である。