稲わら水抽出液がレンゲ生育に及ぼす影響

中野尚夫*1*,2*, 平井幸雄1*2*

(1) 島根大学・(2) 島根県農業試験場)

要旨：レンゲ立毛中に水稲を不斎起播種する栽培を継続するとレンゲ植生が経年的に劣化する。この原因の1つとして地表面を被覆している稲わらから生育阻害物質が滲出し、レンゲの生育を阻害することが考えられたので、稲わらを蒸留水で振をして得た水抽出液がレンゲの発芽・生育・生存に及ぼす影響を検討した。稲わら水抽出液によってレンゲの発芽が阻害された。また、水抽出液に不斎起播種のレンゲは生育、特に根の生育が阻害され、その濃度が高いと根が伸長せず、枯死した。ララスチック製トレイの土壌表面に水抽出液を含んだ稲わらを被覆した中に播種したレンゲは水抽出液を含まない稲わらを被覆した場合に比べ生育、特に根の生育が著しく劣り、播種1 日後には約70%が枯死した。さらに、土壌表面を乾燥稲わらで被覆あるいは被覆しないポットを夏季の間浸水状態にし、蒸散20 日後に干葉を展開したレンゲを移植した実験では、前者の生育、特に根の生育が後者に比べ劣った。これらの事実から、地表面を稲わらが被覆した場合において、稲わら再生植物の生育、特に根部の生育が阻害されることを明らかにした。

そこで、本研究では、稲わら水抽出液がレンゲの発芽、若葉植物の生育、およびその生存に対する影響を検討するとともに、降雨や水稲栽培期間中の浸水による稲わらからの生育阻害物質の土壌表面への滲出しについても検討を加えた。

材料と方法

実験1

1995年9月8日に、粉末した稲わら10 gに150 mLの蒸留水を加えて18時間振とう(9時間振とう、10時間静置、9時間振とう)して得た水抽出液(原液、1/2希釈液、1/4希釈液、および対照の蒸留水を濾紙3枚を敷いたペット皿にそれぞれを3 mL入れ、ペット皿当たりレンゲ種子50粒を播種し、播種後2日から7日までの発芽数を調査した。なお、実験は5反復で実施した。

実験2

1995年に実験1と同様の方法で得た水抽出液(原液、1/2希釈液、1/4希釈液、1/8希釈液、1/16希釈液、1/32希釈液、および対照の蒸留水を濾紙3枚を敷いた直径6 cm×高さ7.5 cmの蓋付きガラス製円筒容器に3 mL入れ、催芽したレンゲ種子を1容器当たり7×10個種子床して5±15日生育させた後、草丈、地上部乾物重(茎平均を含む、以下地上部重）、最大根長（以下根長）、および根部乾物重（以下根重）を測定した。各実験の播種日、調査日、置床個体数、反復数は第1表の通りであった。

第1表 実験2におけるレンゲ播種日および調査日

<table>
<thead>
<tr>
<th>実験番号</th>
<th>播種日</th>
<th>調査日</th>
<th>播種数</th>
<th>生育期間</th>
<th>反復数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 回目</td>
<td>7月19日</td>
<td>7月31日</td>
<td>7</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>1 回目</td>
<td>7月19日</td>
<td>8月 3日</td>
<td>7</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>2 回目</td>
<td>8月 23日</td>
<td>8月28日</td>
<td>10</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>3 回目</td>
<td>10月16日</td>
<td>10月24日</td>
<td>10</td>
<td>8</td>
<td>5</td>
</tr>
</tbody>
</table>

播種数: 1容器当たり播種数。
実験 3

1995年5月16日に3cm前後に切断した風乾稲わら10gに135mLの蒸留水を加えて18時間振とう（実験1と同じ）して得た水抽出液（原液）、1/2希釈液、1/4希釈液、1/8希釈液、および対照の蒸留水を3枚の濾紙を敷いたベトリ皿に3mL入れ、催芽レング種子をベトリ皿当たり20粒播種し、16日間の生存率の推移を調査した。実験は4回実施した（実験3a）。また、同年5月25日に同様の方法で得た水抽出液と蒸留水について、同様の方法でベトリ皿当たり催芽レング種子20粒を播種し、播種5日後に水抽出液あるいは蒸留水を継続する区（稲わら液－蒸留水区、蒸留水－蒸留水）と蒸留水あるいは水抽出液に交換する区（稲わら液－蒸留水区、蒸留水－蒸留水）を設け、2回天播種後15日の生存率の推移を調査した（実験3b）。

実験 4

1997年10月29日に、花崗岩質の山土を詰めた15cm×23cm×4cmのプラスチック製トレイの地表面を、風乾稲わら30gに対し蒸留水150mLを加えて18時間振とう（実験1と同じ）して得た水抽出液を含む稲わらで被覆する区（わら抽出液区）と水抽出液を含まない稲わら残渣で被覆し蒸留水150mLを加えた区（わら残渣区）を設け、催芽したレング種子を被覆わらに隙間を作って1トレイ当たり20粒播種し、実験室内で生育させた。11月7日に11月19日に生存率と胚軸長および根長を調査した。1区に1トレイを用い、3回繰り返し実施した。

実験 5

花崗岩質の山土を詰めた5000分の1ワグネルポットに十分な湛水をした後地表面に、1996年10月30日風乾稲わら20gを被覆した区（稲わら被覆区）と風乾稲わら20gに150mL蒸留水で7時間振とうした後水抽出液を除いた稲わら残渣を被覆した区（わら残渣被覆区）を設け、11月11日に本著の抽出し始めたレングを被覆わらに隙間を作ってポット当たり7個体移植し、ビニールハウス内で生育させた。12月25日、1月27日、および2月26日に草丈、根長（胚軸を含む）、地上部重、および根重（胚軸を含む）を調査した。なお、11月13日から2月21日まで概ね1週間隔で水道水400mL程度を洗浄器によって湛水した、いずれの調査時には1処理5ポットを調査に供した。

実験 6

1997年に、5000分の1ワグネルポットに3cm前後に切断した風乾稲わら20gを地表面に被覆した区（わら被覆区）とそれを被覆しない区（無被覆区）を設け、ビニールハウス内で7月7日から10月2日まで湛水状態を保ち、10月22日に子葉が展開したレングをポット当たり15個体移植し、ビニールハウス内で生育させた。11月21日に草丈、胚軸長、地上部重、根長および根重（胚軸を含む）を測定した。4回繰り返し実施した。

結果

1. 水抽出液の濃度と発芽、生育との関係

第1図に水抽出液の濃度とレングの発芽率の関係を示した。発芽率は、初期から水抽出液の濃度が高いほど低く経過し、最終の発芽率も濃度が高いほど低かった。特に原液のそれは顕著に低かった。

第2図で第3図に、実験2における播種5日後（8月28日調査）あるいは播種12日後（7月31日調査）における水抽出液濃度と生育との関係を示した。播種5日後の結果（第2図）では、草丈は高濃度で低くなる傾向を示したが、地上部重には濃度による差がなかった。一方、根長、根重は濃度が高くなるに伴って低下し、特に1/4希釈液以上の濃度における根長、1/4希釈液以上の濃度における根長は蒸留水のそれらに比べ有意に小さく、原液では根の伸長が認められなかった。播種12日後の結果（第3図）においても、水抽出液の濃度とレングの生育との関係は播種5日後の結果とはほぼ同様の傾向を示し、1/4と1/2希釈液の草丈、根長、根重は蒸留水のそれらに比べて有意に低かった。また原液ではすべての個体が枯死了した。なお、4図を実験を通して、1/8ないし1/4希釈液以上の濃度では根部が褐色を呈し、播種5日後の原液のように根が伸長しなかった場合には胚軸の先端が黒変していた。

2. 水抽出液におけるレングの生存

第2表で実験2における実験終了日各水抽出液濃度での生存率を、第4図に実験3における水抽出液濃度と生存率との関係を示した。実験2の原液において、実験期間が5日間の2回目の実験では枯死個体がみられなかったが，
第2回 生育期間5日における稲わら抽出液希釈液濃度とレング幼植物の生育との関係（実験2）。
8月28日調査、0（蒸留水）、1/1（原液）、その他は原液に対する希釈倍率。1/32希釈液と1/16希釈液は横軸表示省略。縦棒は標準誤差を示す。

第3回 生育期間12日における稲わら抽出液希釈液濃度とレング幼植物の生育との関係（実験2）。
7月31日調査、濃度は第2回参照。縦棒は標準誤差を示す。

第2表 レングの生存率に及ぼす水抽出液濃度および生育期間の影響（実験2）。

<table>
<thead>
<tr>
<th>実験番号</th>
<th>生育期間</th>
<th>水抽出液濃度</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(日数)</td>
<td>蒸留水</td>
</tr>
<tr>
<td>1回目</td>
<td>12</td>
<td>100.0</td>
</tr>
<tr>
<td>2回目</td>
<td>15</td>
<td>100.0</td>
</tr>
<tr>
<td>3回目</td>
<td>5</td>
<td>100.0</td>
</tr>
</tbody>
</table>

実験番号：第1表参照。水抽出液濃度：原液は粉末稲わら10gを蒸留水150mLで浸透した水抽出液、その他はその希釈倍率。

実験期間が8日の3回目実験では一部の個体が枯死し、1回目の実験では12日目でも全体が枯死した。1/2希釈液についても、実験1の12日目には約15%の個体が枯死し、15日目には約30%の個体が枯死した（第2表）。実験3aの生存率の推移（第4図）では、蒸留水には枯死する個体が認められなかったが、原液では播種7日後、1/2と1/4希釈液では播種8日後から一部の個体が枯死し、いずれも日数を経るに伴って生存率が低下した。播種11日後には原液のすべての個体が枯死し、1/2希釈液のほとんど全ての個体が枯死した。また、実験4の木抽出液を含む稲わらを被覆した区（わら抽出液区）では水抽出液を含まない稲わら被覆を被覆した区（わら残渣区）に比べ、子葉展開までに至った個体数が少なく、子葉が展開した個体についても根の生育が著しく悪く、播種21日後の11月19日には生存率が低下した。しかし、胚軸の生育にはわら抽出液区とわら残渣区との間に差がみられなかった（第3表）。なお、水抽出液で生育したものでも、生育途中に蒸留水に移すと、枯死する個体がみられなかった（第5図）。
第3表 水抽出液の有無と胚軸・根長、生存率との関係（実験4）。

<table>
<thead>
<tr>
<th>処理区</th>
<th>胚軸長 cm</th>
<th>最大根長 cm</th>
<th>生存率 %</th>
<th>胚軸長 cm</th>
<th>最大根長 cm</th>
<th>生存率 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>わら残渣液区</td>
<td>2.1</td>
<td>0.7</td>
<td>95.0</td>
<td>2.2</td>
<td>1.4</td>
<td>98.3</td>
</tr>
<tr>
<td>わら抽出液区</td>
<td>2.3</td>
<td>4.5</td>
<td>95.0</td>
<td>2.1</td>
<td>6.0</td>
<td>33.3</td>
</tr>
<tr>
<td>LSD</td>
<td>0.8</td>
<td>2.6</td>
<td>12.4</td>
<td>0.3</td>
<td>3.2</td>
<td>37.3</td>
</tr>
</tbody>
</table>

月日は調査日、LSD：5%水準。トレーサごとの平均値をもとにフィッシャーのLSD法で算出。

第5図 わら水抽出液・蒸留水の交換がレング幼植物の生存に及ぼす影響（実験3）。

第4表 わらおよび残渣被覆がレング幼植物の生存に及ぼす影響（実験5）。

<table>
<thead>
<tr>
<th>調査日</th>
<th>処理区</th>
<th>草丈 cm</th>
<th>地上部重 g/個体</th>
<th>最大根長 cm</th>
<th>根重 g/個体</th>
</tr>
</thead>
<tbody>
<tr>
<td>12月25日</td>
<td>わら被覆区</td>
<td>4.4（86）</td>
<td>24.5（87）</td>
<td>16.8（95）</td>
<td>20.5（90）</td>
</tr>
<tr>
<td></td>
<td>わら残渣被覆区</td>
<td>5.1（100）</td>
<td>28.2（100）</td>
<td>17.7（100）</td>
<td>22.8（100）</td>
</tr>
<tr>
<td></td>
<td>LSD</td>
<td>1.6</td>
<td>7.4</td>
<td>3.2</td>
<td>14.2</td>
</tr>
<tr>
<td>1月27日</td>
<td>わら被覆区</td>
<td>4.9（65）</td>
<td>75.3（54）</td>
<td>18.7（77）</td>
<td>72.8（55）</td>
</tr>
<tr>
<td></td>
<td>わら残渣被覆区</td>
<td>7.5（100）</td>
<td>139.0（100）</td>
<td>24.3（100）</td>
<td>132.9（100）</td>
</tr>
<tr>
<td></td>
<td>LSD</td>
<td>2.1</td>
<td>33.6</td>
<td>3.7</td>
<td>26.7</td>
</tr>
<tr>
<td>2月26日</td>
<td>わら被覆区</td>
<td>5.5（65）</td>
<td>99.6（47）</td>
<td>21.9（76）</td>
<td>116.1（47）</td>
</tr>
<tr>
<td></td>
<td>わら残渣被覆区</td>
<td>8.9（100）</td>
<td>210.2（100）</td>
<td>28.8（100）</td>
<td>246.0（100）</td>
</tr>
<tr>
<td></td>
<td>LSD</td>
<td>1.2</td>
<td>28.8</td>
<td>7.4</td>
<td>81.4</td>
</tr>
</tbody>
</table>

LSD：各ポットの平均値をもとにフィッシャーのLSD法で算出。5%水準。内はわら残渣被覆区に対する比（％）。

第5表 夏期浸水がレングの生育に及ぼす影響（実験6）。

<table>
<thead>
<tr>
<th></th>
<th>草丈 cm</th>
<th>胚軸長 cm</th>
<th>地上部重 g/個体</th>
<th>根長 cm</th>
<th>根重 g/個体</th>
</tr>
</thead>
<tbody>
<tr>
<td>わら被覆区</td>
<td>3.7</td>
<td>0.9</td>
<td>4.1</td>
<td>9.1</td>
<td>3.7</td>
</tr>
<tr>
<td>無被覆区</td>
<td>3.9</td>
<td>0.9</td>
<td>4.5</td>
<td>10.9</td>
<td>4.6</td>
</tr>
<tr>
<td>LSD</td>
<td>0.5</td>
<td>0.2</td>
<td>0.6</td>
<td>2.3</td>
<td>0.7</td>
</tr>
</tbody>
</table>

LSD：ポットごとの平均値をもとにフィッシャーのLSD法で算出。
植したレンゲ幼植物の生育を示した。枝丈、胚芽長についててはら被覆区と無被覆区に差がなかったが、地上部重、根長、根重についてははら被覆区が無被覆区に比べて小さい傾向にあり、特に根重については有意に低かった。

考 察

レンゲの生育は、稲わらを水抽出液の濃度が高くなるに伴って低下し、その低下は地下部で顕著であった（第2、3図）。特に原液では、生育期間が5日間の2回目実験（8月28日調査）で胚芽の先端が黒変して根部の生育がみられず、生育期間が12日間の1回目実験（7月31日調査）ではすべての個体が枯死した。胚芽先端変の黒変は、レンゲ立毛中に米水を不耕起播種する栽培を実践している農家がコンパス排出稲わらが多い部分にもみられた。また、水抽出液を含まない稲わら残渣の地表面被覆では水抽出液を含む稲わらや風乾稲わらの被覆よりレンゲの生育が優れた（第3、4表）。これらの結果は、稲わらの水抽出液がレンゲの生育を阻害することを示すものである。Chou and Lin（1976）は稲わらの水抽出液によってリコトトウの根部の生育が阻害されることを指摘している。また、アルファルファなどのマメ科牧草においても、米水栽培の水抽出液に幼苗の生育が阻害されるという報告が多い（Chung and Miller 1995, Miller 1996, Springer 1996）。なお、アルファルファなどにおいては胚芽の生育も阻害されると言われている（Chung and Miller 1995, Miller 1996, Springer 1996）が、本実験のレンゲにおいてては胚芽の生育にはほとんど影響がなかった（第3、5表）。

レンゲ個体の生存についてみると、実験2の原液では生育期間が5日間（8月28日調査）では枯死個体がみられなかったが、生育期間が8日間（10月24日調査）で枯死する個体が生じ、生育期間が12日間（7月31日調査）にもなるとすべての個体が枯死した。1/2稀液原液では生育期間12日で約15%，15日で約30%の枯死個体がみられたが、1/4希釈液以下の濃度では枯死個体がほとんどなかった（第2表）。実験3aにおいても、原液では7日目から、1/2と1/4希釈液では8日目から枯死する個体がみられ、いずれも経時的に生存率が低下し、11日目には原液のすべての個体が、1/2希釈液の半数の個体が枯死したが、1/8希釈液には枯死する個体が認められなかった（第4図）。これらの結果は、水抽出液での生育期間が長いほど、またその濃度が高いほど枯死する個体が多くなることを示すものである。そして、水抽出液を含む稲わらで地表面を被覆すると、播種9日後の11月7日には褐色ないし黒色を帯びた生長の小さい根が多く、播種21日後の11月19日には約70%の個体が枯死し、生存個体でも根の生育が極めて劣った（第3表）。このことから、レンゲは地表面を被覆した稲わらからの水抽出液によって生育、特に根部の生育が阻害され、著しい場合には根がほとんど伸長しないため、吸水などが低下して枯死に至ると推察された。

なお、稲わら水抽出液への浸漬によって生育が阻害されても蒸留水に移すと、枯死する個体がみられなかったように、生育が回復すると推察された（第5図）。

実験5では稲わら被覆区のレンゲの生育が水被覆区と比較して劣り、しかもそれらの生育の差は生育が進むに伴って大きくなくなった（第4表）。このことは、泥水の周辺は、水抽出液よりによって水抽出物が浸出し、生育阻害が大きくなったことを示唆している。水稲栽培中に播種される本栽培のレンゲは、出芽した後にコンバイン収穫によって排出された稲わらが地表面を被覆するため、降雨や溜水状態のもとで稲わらから排出された生育阻害物質によって、出芽して日数を経ていない幼植物の生育が阻害され、枯死に至る個体が生じるものと推察された。

さらに、稲わらで地表面を被覆して夏期を蒸操状態にし、秋期の落水後に移植したレンゲ幼植物も生育が阻害され、その生育阻害は根部において顕著であった（第5表）。このことは、稲わらの生育阻害物質が水稲栽培期間中の泥水によって排出し、それらが土壤に残留してレンゲの生育を阻害することを示唆するものであろう。Chou and Lin（1976）、Chouら（1977）も生育抑制物質が蒸操状態で稲わらなどから排出することを指摘している。したがって、レンゲ立毛水稲不耕起播種栽培を続けると、稲わらから降雨などによって排出される生育阻害物質だけでなく、水稲栽培期間中の蒸操状態で排出されたものが加わり、レンゲの生育阻害が一層大きくなると考えられる。そして、このような排出物は土壤に残留・集積して、レンゲ植生の歳年的な劣化をもたらすことになると推察された。この排出物の土壤残留の様相については現在検討中である。

以上から、コンバインから排出された稲わらが地表面に放置されたままであるレンゲ立毛中水稲不耕起播種する栽培では、地表面の稲わらから降雨や泥水の浸漬状態、さらには水稻栽培期間中の蒸操によってレンゲの生育が発芽を阻害する物質が排出してレンゲの植生が劣化し、またそれは土壤に残留して、レンゲ植生の劣化を經年に大きくすると考えられた。

引用文献

Abstract : Under the conditions of a continuously rice and Chinese milk vetch rotation system during the non tillage cultivation, the vegetation of Chinese milk vetch become poorer year by year. The effects of the aqueous extracts from rice straw on the germination and on the growth of Chinese milk vetch were examined. In the 1st experiment, allelopathic rice-straw substances extracted with water (RE) were added to petri dishes at 7 concentrations, and Chinese milk vetch was seeded 2 days after inhibition. The higher the RE concentration, the lower the germination and growth rates, especially the rate of growth of the radicle. At high RE concentration, the tip of the hypocotyl became black, and all seedlings died within 12 days after seeding. In the 2nd experiment, Chinese milk vetch was sown on a tray with soil, and covered with 2 kinds of rice straw, one with RE removed (RES), and the other with RE retained (CS). The growth of the seedlings in CS was significantly poorer than that in RES. At 20 days after seeding, the survival percentage was about 100% and 30% in RES and CS, respectively. In the 3rd experiment, pots covered with rice straw (RS) or without rice straw (NS) were placed in a greenhouse under a flooded condition from July to September, and at 20 days after natural drying the seedlings of Chinese milk vetch at the cotyledon stage were transplanted in the pots. The growth in RS was inferior to that in NS, especially in radicles. These results indicated that the extracts from rice straw inhibited the germination and growth of Chinese milk vetch. It is considered that the water-soluble allelopathic substances in rice straw were accumulated in the field during non tillage cultivation of Chinese milk vetch and rice.

Key words : Allelopathy, Chinese milk vetch (Astragalus sinicus L.), Flooded condition, Germination, Rice straw, Seedling growth, Survival, Water-soluble chemicals.