Present status and research trends of cropping system in southern Kyushu

Hideyuki Mochida
(Kyushu Natl. Agric. Exp. Stn.)

1. 南九州地域における稲作付体系の現状

南九州地域は、北海道東部、関東と並んでわが国における代表的な稲作地域を形成している。各々の稲作地域は、気候、降水量などの要因について異なる気象的特徴を持っており、南九州は平均気温15.8℃、年平均降水量2396mm、他の地域に比べて高温で降水量が極めて多い。そうした気象的特徴が、1年2作あるいはそれ以上の集約度を持つ作付体系を可能にしている。南九州地域の気象的特徴のうち作物生産にとって長所となるのは、無霜期間が長く多毛作が可能であること、作物種や作型の自由な選択が容易であることなどが挙げられる。一方、短所となるのは、降雨の偏在により水分ストレスを受けやすいこと、高温多湿のため病虫害が多発し収量、品質の低下を招きやすいこと、多雨により養分の溶脱や土壌の流亡が起こりやすいこと、台風来襲の機会が相対的に多いことなどである。

南九州地域における主要畑作物の作付面積の推移を1955年を100とした時の指数でみると、ナタネ、麦類、陸稲、大豆は５％を切っており、ナタネ、麦類の作付面積は1000haに満たない（第1表）。それに対して、野菜、茶、飼料作物の作付面積は増加しており、とりわけ飼料作物の作付拡大は顕著である。飼料作物における作付けの拡大は、肉用牛の飼養戸数の増加に伴っており、1995年の時点では、カンジョの作付面積の3倍以上に達している。このように、輪作体系を構成する作物種が変化する一方で、耕地利用率の減少

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>減少</td>
<td>ナタネ</td>
<td>43.6</td>
<td>16.6</td>
<td>2.0</td>
<td>0.7</td>
<td>0.1</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>麦類</td>
<td>70.8</td>
<td>44.8</td>
<td>9.7</td>
<td>4.4</td>
<td>0.6</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>米</td>
<td>23.2</td>
<td>11.7</td>
<td>8.9</td>
<td>3.6</td>
<td>0.6</td>
<td>2.6</td>
<td>3.8</td>
</tr>
<tr>
<td></td>
<td>ゲイ</td>
<td>21.3</td>
<td>4.3</td>
<td>2.1</td>
<td>2.8</td>
<td>0.8</td>
<td>3.8</td>
<td>3.8</td>
</tr>
<tr>
<td></td>
<td>カンジョ</td>
<td>73.3</td>
<td>91.3</td>
<td>26.9</td>
<td>27.2</td>
<td>18.4</td>
<td>25.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>タバコ</td>
<td>8.7</td>
<td>7.9</td>
<td>6.9</td>
<td>5.6</td>
<td>4.8</td>
<td>55.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ペレシ</td>
<td>5.4</td>
<td>6.8</td>
<td>3.2</td>
<td>3.2</td>
<td>3.8</td>
<td>70.4</td>
<td></td>
</tr>
<tr>
<td>増</td>
<td>野菜類</td>
<td>19.5</td>
<td>27.3</td>
<td>27.1</td>
<td>32.4</td>
<td>24.9</td>
<td>127.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>茶</td>
<td>3.8</td>
<td>5.7</td>
<td>9.0</td>
<td>9.4</td>
<td>8.9</td>
<td>234.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>フロモコ</td>
<td>0.2</td>
<td>1.3</td>
<td>6.3</td>
<td>12.8</td>
<td>14.2</td>
<td>710.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>飼料作物</td>
<td>0.2</td>
<td>1.4</td>
<td>1.9</td>
<td>0.5</td>
<td>0.0</td>
<td>∞</td>
<td></td>
</tr>
<tr>
<td></td>
<td>その他</td>
<td>7.3</td>
<td>11.6</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>∞</td>
<td></td>
</tr>
<tr>
<td></td>
<td>養料牧草</td>
<td>2.5</td>
<td>21.5</td>
<td>35.0</td>
<td>35.9</td>
<td>35.9</td>
<td>∞</td>
<td></td>
</tr>
</tbody>
</table>
は1955年から20年間においてはだてなく、182%から125%とおよそ60%低下しており、それ以降も漸減している。

作物種の変化や耕地利用率の低下は、実際の輪作体系にも大きな影響を与えている。第2表には、宮崎県都市月野原台地における作付比率を示したが、夏作はトウモロコシ、秋作はソルゲー、春作及び冬作はイタリアンライグラスと飼料作物の作付比率が極めて高い。これら作物の作付けが多いのは、畜産農家が多く周年で自給飼料が必要であることを反映している。これに続いて作付けが多いのは、夏作ではサトモ、カンショ、冬作ではラッキョ、時期を問わなければゴボウである。これらの作物は、いずれも根菜類、あるいは地下部を収穫対象とする作物で、南九州地域の気象的特徴が抱えるマイナス面、例えば台風、干ばつなどの気象災害や病虫害に対して比較的強く、葉菜類と異なり長距離輸送にもよく耐えるという特性を持っている。

第2表 月野原台地における畑作物の作付比率（%）

<table>
<thead>
<tr>
<th>順位</th>
<th>春期 作物名</th>
<th>比率</th>
<th>夏期 作物名</th>
<th>比率</th>
<th>秋期 作物名</th>
<th>比率</th>
<th>冬期 作物名</th>
<th>比率</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>イタリアン</td>
<td>16.1</td>
<td>トウモロコシ</td>
<td>27.6</td>
<td>ソルゲー</td>
<td>8.7</td>
<td>イタリアン</td>
<td>17.1</td>
</tr>
<tr>
<td>2</td>
<td>トウモロコシ</td>
<td>11.9</td>
<td>ゴボウ</td>
<td>9.3</td>
<td>カシオ</td>
<td>7.0</td>
<td>サトモ</td>
<td>5.5</td>
</tr>
<tr>
<td>3</td>
<td>ゴボウ</td>
<td>8.7</td>
<td>カシオ</td>
<td>9.2</td>
<td>サトモ</td>
<td>6.8</td>
<td>ゴボウ</td>
<td>5.2</td>
</tr>
<tr>
<td>4</td>
<td>サトモ</td>
<td>5.1</td>
<td>サトネ</td>
<td>8.2</td>
<td>ゴボウ</td>
<td>6.5</td>
<td>苗木</td>
<td>4.4</td>
</tr>
<tr>
<td>5</td>
<td>サトネ</td>
<td>5.0</td>
<td>サトネ</td>
<td>4.7</td>
<td>サトネ</td>
<td>5.8</td>
<td>サトネ</td>
<td>3.8</td>
</tr>
</tbody>
</table>

注）1992年と1993年の平均値。比率は、総調査筆数を100とした時の指数で示す。

都城近辺の作付体系の変遷を明らかにするために、1974年と1981年に実施した都城市を含む広域霧島地域の作付調査と対照して今回の調査結果を示した（第3表）。これによって、ソルゲー、トウモロコシの一連の作付体系の作付比率がいずれの調査時点でいても最も高いことが分かる。当地域（都城市）における畜産の農業粗生産額に占める割合は75%に達しており、そうした畜産の地位の高さが飼料作物の作付比率に影響している。また、前後作が休業で1年1作体系となっている割合が大きくになっている。休閑が増えている理由を栽培面から考えると、収成性の高い作物を連作するために土壌消毒の期間が新たに加わったり、マルチ資材の利用が減少する作期が前進し結果として栽培期間が長くなったため、前後作を単作で導入する時間的余裕がなかったなどの理由が挙げられる。栽培面以外では、農家の高齢化に伴う労働力の低下も見逃せない。

第3表 都城近辺における畑作付体系の変遷

<table>
<thead>
<tr>
<th>1974年当時の主な作付体系</th>
<th>作付比率（%）</th>
<th>1981年当時の主な作付体系</th>
<th>作付比率（%）</th>
<th>1993年当時の主な作付体系</th>
<th>作付比率（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>リョウゴー、トウモロコシイタリアン</td>
<td>30.3</td>
<td>リョウゴー、トウモロコシイタリアン</td>
<td>27.3</td>
<td>リョウゴー、トウモロコシイタリアン</td>
<td>12.7</td>
</tr>
<tr>
<td>カシオ、カシオ飼料用</td>
<td>20.0</td>
<td>カシオ飼料用</td>
<td>11.5</td>
<td>カシオ飼料用</td>
<td>9.8</td>
</tr>
<tr>
<td>サトネ野菜</td>
<td>10.0</td>
<td>サトネ野菜</td>
<td>9.1</td>
<td>サトネ野菜</td>
<td>8.9</td>
</tr>
<tr>
<td>ミキ、カシオ休業</td>
<td>7.2</td>
<td>ミキ、カシオ休業</td>
<td>6.5</td>
<td>ミキ、カシオ休業</td>
<td>6.3</td>
</tr>
<tr>
<td>サトネ修</td>
<td>7.2</td>
<td>サトネ修</td>
<td>5.5</td>
<td>サトネ修</td>
<td>3.9</td>
</tr>
</tbody>
</table>
2. 畑作付体系が抱えている栽培上の問題点

ここで取り上げた都城市月原原地域は、典型的な南九州地域の畑作地帯の一つであり、作物種の構成や作付面積比に多少の違いはあるが、畑作付体系に抱えている栽培上の問題は共通するものが多い。

1）休閑期間が増加し耕地利用率の減少がさらに進んでいる。休閑地では、マスグなどのでん秋防止による雑草の発生が問題となっている。
2）収穫期の向上を追求するため、稲作害、土壌病害予防を付けてはされている。生産阻害要因を取り除くために薬剤散布や土壌消毒が頻繁に行われている。
3）多雨による養分汚染に対する対策が講じられていないが、化学肥料の有機物の過剰施肥は水洗されている。地下水汚染などの環境汚染が問題となっている。
4）イネ科作物の連作が行われている事例が多く、連作によるソルギーの初期生育異常などの連作障害が認められている。

3. 作付体系技術の現状と今後の展望

畑作付体系が抱えている栽培上の問題点を解決するための作付体系技術として3つの取り組みを紹介し、今後の展望としたい。

（1）秋冬作物と夏作物の同時植技術

同時植技術では、秋冬期に秋冬作物と夏作物のサトウが同時期に植付けし、畑地の高付利目を図ろうとした（第1図）。冬期間は、秋冬作物が生育し、サトウは地下で越冬状態となり、春期になると、秋冬作物の地際からサトウが萌芽し、秋冬作物が収穫されるとサトウの単独栽培となる。この技術は、機械収穫の可能な大麦、イタリアンライグラスを始めキャベツなど様々な秋冬作物に適用できる。

（2）線虫対抗植物を利用した連作障害回避技術

暖地における連作障害の原因のうち、線虫害は主要なもののが一つである。この技術は、サトウなどの収量、品質に甚だしい被害を与え、さみネギサレセンチュウを対象に線虫対抗植物作付体系に導入して線虫密度の制御をしようとするものである。第2図によると、作物によって、あるいは同じ作物でも品種によって線虫の増殖性が異なることが分
かる。クロタラリア、ギニアグラスなどの線虫対抗植物は地力増進作物としての効果も見逃せず、導入に当たっては、線虫密度低減、地力増進、雑草制御など多面的な効果を持つ有用作物として総合的にその是非を判断する必要がある。

（3）作物残さを利用した減肥栽培

南九州の畑作地域ではカンショが基幹作物となっており、カンショと露地野菜、カーショと飼料作物の輪作体系が成立している。第3図には、カンショを主軸作物とした作付体系試験において、窒素の投入量と持出量を体系ごとに示した。この結果、カンショのつるやキャベツの外葉などの可搬残さをそのまますぎ込めば10〜30kg/10aの窒素負荷が生じ、特に可搬残さに含まれる窒素量が多いカンショ-キャベツ体系では25〜30kg/10aに上る。そこで、カンショ-キャベツ体系においてカンショの可搬残さに含まれる窒素量を減肥してキャベツ栽培したところ、減肥してもほぼ同等のキャベツ収量が得られている。現在は、キャベツの残さを活用したカンショの減肥栽培に取り組んでいる。こうした試みは、可搬残さに含まれる窒素を考慮して減肥を図ろうとするもので、作付体系としての窒素負荷低減の方策の一つとなることが期待される。

第3図 各種作付体系における窒素収支

注）棒グラフの上段は窒素投入量、下段は窒素持出量をそれぞれ示す。

4. 残された問題点

作付体系が作物生産に及ぼす影響は、作物、土壌微生物、病害虫各々の相互間作用を通じて気象条件、土壌条件などの栽培環境条件の変化によってもたらされる。相互関作用の中にはアレロパシー作用のように充分には明確されていないものもあり、そうした相互間作用の解明を通じて環境負荷の小さい作付体系を構築する必要がある。また、作付体系技術は、総合技術であるためその影響は多岐にわたり、線虫密度低減、地力増進など個々の効果に関する影響だけでそれらを評価することは難しい。現在、生産技術の環境保全効果を経済的に評価する手法が様々な角度から検討されており、上記の技術もそうした手法で評価することが今後は重要となる。