九州における普通ソバ子実のルチン, 粗蛋白および
粗脂肪含量の品種間差異

森下寛和*・手塚隆久
（農業技術研究所）

要旨: 九州で栽培されたソバ遺伝資源の子実の化学成分の特徴を明らかにするため, 九州の在来種を含む内外の遺伝資源を 2 年間栽培し, ルチン, 粗蛋白および粗脂肪の含量について調査した。ルチン含量の品種間の差異は粗蛋白および粗脂肪の含量と比較して大きかった。ルチンおよび粗脂肪の含量は品種間差異よりも年次間差異が大きかった。ルチンの含量はルチンの蓄積には環境要因として栽培期間中の温度が高いと有利であることが示唆された。子実重とルチン含量の間には両年とも有意な負の相関が, 粗蛋白含量と粗脂肪含量の間には両年とも有意な正の相関が認められたが, 千粒重や製粉歩留等と各成分含量との関係は明らかでなかった。

キーワード: 遺伝資源, 九州, 在来種, フライ含量, ソバ, 粗蛋白含量, 品種間差異, ルチン含量。

ソバは, 昔から健康を維持する食物として利用されてきた。現在では血圧下昇作用を有するルチンを含むこと, 高蛋白質含量であることが明らかとなり, 食材として優れていることが広く知られている。ルチン含量については品種間差異 (Kitabayashi ら 1995 a, b, Ohsawa ら Tsutsu- sumi 1995 a) と, 高ルチンを目標とした育種 (Ohsawa と Tsutsu- sumi 1995 b, Minami ら 2001) などの報告がある。ルチン以外の成分の品種間差異については褐変ペプチド含量と灰分含量 (柴田 1979), 蛋白質含量 (大澤 1993), 脂肪含量 (Maaza 1988), ビタミン E 含量 (Honda 1995), フェノール酸含量 (Oomah ら 1996) の報告がある。しかししながらこれら成分に関する研究は東日本あるいはカナダなど寒冷な地域で採種された夏ソバ型および中間型品種を対象としており, 秋ソバ型である九州の晩生品種の評価はほとんど無く, さらにこれらの品種を暖温地九州で栽培評価した報告は無い。したがって本研究は, 子実成分の特性を明らかにするために九州農業試験場 (熊本県西出合町) で 1996 年と 1997 年の 2 年間, 北海道の早生の夏ソバ品種から九州の晩生の秋ソバ品種, さらに外国の品種など様々な生態型の普通ソバ子実のルチン, 蛋白質および脂肪含量等, 成分含量の品種間差異および年次変動について検討した。

材料と方法

前報 (森下・手塚 2001) と同じ材料を供試した。すなわち 1996 年と 1997 年の共通品種 22 品種 (第 1 表) で, この他 1996 年は日本, カナダおよび中国の普通ソバ遺伝資源および育成品種計 16 品種, 1997 年は日本, カナダ, 中国, バキスタン, およびネパールの各品種計 40 品種を用いた。各年とも秋播 60 cm × 株間 6.5 cm で条播し, 本葉が 2 ～ 3 枚展開した頃に間引きを 1 本仕立てにした (25.6 株 m^-2), 1 区面積が 2.7 m², 試験区の配置は乱靶法, 2 反復とした。施肥は全量早肥とし, 硝素, 磷酸, 鉄にそれぞれ 1.1 g m^-2, 1.7 g m^-2, 1.7 g m^-2 施用した。また 2 年とも各作付け前と土壌改良材として苦土石灰 50 g m^-2, 優縁 30 g m^-2 を投入した。1996 年は 8 月 22 日, 1997 年は 8 月 27 日に播種した。成熟期に各試験区の中央部分から 1 区当たり 40 区とり取り, 2 週間以上風乾後, 風乾して塵取り除いた子実について子実重を測定した。なお 1996 年は 10 月 28 日の霜害, 10 月 31 日の凍害のため, 中生・晩生品種の熟度障害が発生したが, これらの品種については, 既に成果黒化していた粒を粒検して供試した。これらの皮付きの子実はシリアンダストミル (フジド ムマット・ジェニア型) により製粉し, 60 メッシュの篩を通過した粒について成分分析に供試した。製粉残留は粒筋粉被して得られた粒と子実重の比率から算出した。ルチン含量は Morishita ら (1998) の方法で定量した。ソバ粉 1 g を 80°C のメタンノール 20 mL で 2 時間抽出後 3000 rpm で 3 分間, 得られた上澄みを 0.45 μm のフィルターで濾去して高速液体クロマトグラフィー (HPLC) で分析した。HPLC は日本分光 (株) の 800 PU シリーズ, 875 UV 検出器を用いた。カラムは蒸留水 (株) の CAPCELLPAK C18, 移動相は 2.5%酢酸/メタノール/アセトニトリル (35:5:10), 流速は 1.0 mL/分, 検出波長は 360 nm, カラム温度は 40°C とした。粗蛋白含量はケルダール法によって得られた全窒素量に蛋白換算数 6.31 をかけて求めた。粗脂肪含量はジェチルエーテル抽出によるソックスレーフ法によって定量した。水分含量は 105°C, 3 時間乾燥により求めた。色彩値は日本電子工業 (株) のスベクトロカラーメーター SE 2000 により L* (明度), a* (赤度), b* (黄度) を測定した。分散分析は, 2 年間のデータをもとにした処理・年次 2 元配置で行った。遺伝子は分散分析の結果得られたそれぞれの平均平方, 品種 (MSs), 年次 (MSs), 生育期間相互作用 (MSs×y), 反復 (MSs) および誤差 (MSs) の比を, 三留 (1960) の方法でそれぞれの分散, 品種 (σ²s), 年次 (σ²y), 交互作用 (σ²sy), 反復 (σ²s) および誤差 (σ²e) の比を計算した。
よび誤差（σ²e）を下記の式で算出して推定した。
E[MS₁] = σ²e + νσ²e + rνσ²v
E[MS₂] = σ²e + νσ²e + rνσ²v
E[MS₃] = σ²e + νσ²e + rνσ²v
E[MS₄] = σ²e + νσ²e + rνσ²v
品種数ν, 反復数r, 年数yとした。
以上の式を用いて得られた分散から下記の式で遺伝率h²を推定した。
E[h²] = σ²v/(σ²v + σ²v + σ²v + σ²e)
また各群間の相関および年次間相関、さらに日本の品種と日本の品種と生態型の近いカナダの品種計37点についてルチン含量と登熟期間中（開花期から成熟期まで）の平均気温、平均日射量、積算温度および積算日射量等の気象条件との関係について九州農業試験場で観測された気象データを用いて相関および偏相関を計算した。

結果

第1表に1996年と1997年の両年に共通して供試した22点の各種成分含量を示した。両年を比較した結果、ルチン含量と粗脂肪含量は1996年の方が高く粗蛋白含量は1997年の方が高かった。ルチン含量について1996年は10.7〜29.8 mg/100gDW, 1997年は10.6〜23.8 mg/100gDWで両年とも2倍を超える品種間差異を示した。粗蛋白含量について1996年は9.3〜10.4 DW%, 1997年は9.1〜11.3 DW%, 粗脂肪含量について1996年は1.99〜2.26 DW%, 1997年は1.53〜1.98 DW%でルチン含量と比較して品種間差異の幅は小さかった。

以下分散分析および年次相関の解析は2年間の共通種品22点について実施した。第2表に年次を除いた解析と表示した。ルチン含量の反復以外は有意差があった。ルチン含量と粗脂肪含量は年次別の平均が、粗蛋白含量は品種と平均が最も大きかった。また遺伝率は粗蛋白含量が最も高かった。

第3表に1996年と1997年の年次間相関を示した。ルチン含量および粗蛋白含量については両年間の有意な年次相関が認められたが、粗脂肪含量については認められなかった。

第1図と第2図に1996年と1997年の子実体とルチン含量、粗蛋白含量および粗脂肪含量の関係をそれぞれ示し
第2表 各成分の年次を込みにした分散分析の平均平方と遺伝率。

<table>
<thead>
<tr>
<th>自由度</th>
<th>ルチン</th>
<th>粗蛋白</th>
<th>粗脂肪</th>
<th>分散の推定値</th>
</tr>
</thead>
</table>
| 全体 | 87 | 45.759** | 0.643** | 0.019** | MS
| 品種 | 21 | 151.880** | 0.279** | 4.158** | MS
| 年次 | 1 | 21.797** | 0.194** | 0.012** | MS
| 交互作用 | 21 | 1.580 | 0.451** | 0.036** | MS
| 反復 | 2 | 3.830 | 0.051 | 0.005 | MS
| 遺伝差 | 42 | 0.271 | 0.451 | 0.019 |

1) $E[MS_e] = \sigma^2_e + 22\sigma^2_x + 44\sigma^2_v$, $E[MS_b] = \sigma^2_e + 22\sigma^2_x$, $E[MS_{b\times v}] = \sigma^2_e + 22\sigma^2_x + 28\sigma^2_{b\times v}$, $E[MS_{v}] = \sigma^2_v$, $E[h^2] = \sigma^2_v/(\sigma^2_v + \sigma^2_x + \sigma^2_{b\times v} + \sigma^2_e)$。

**：1％水準で有意。

第3表 各成分含量の年次間相関 (n=22)。

<table>
<thead>
<tr>
<th>ルチン</th>
<th>粗蛋白</th>
<th>粗脂肪</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.435*</td>
<td>0.641**</td>
<td>0.285</td>
</tr>
</tbody>
</table>

*：5％水準、**：1％水準でそれぞれ有意。

た。両年とも子実重とルチン含量の間に1％水準の有意な負の相関が認められた。この相関が、ルチン含量の品種との相関を示した、ネパールの種類とルチン含量は他の地域の品種よりも高く、一方中国の2品種のルチン含量は低かった。

第4表に1996年と1997年のルチン含量、粗蛋白含量および粗脂肪含量の相関を示した。粗蛋白含量と粗脂肪含量との間には両年とも1％水準の有意な正の相関が認められたが、それはルチン含量と粗蛋白含量との間には、1996年のみ有意な正の相関が認められたのみであった。

第5表に生育日数、千粒重および製粉歩留とルチン含量、粗蛋白含量および粗脂肪含量との相関を示した。1997年のみ千粒重と製粉歩留はルチン含量との間に有意な負の相関が、粗蛋白含量との間に有意な正の相関が認められた。

また本研究において1997年は10月下旬に凍害を受けたことにより成熟期が遅れなかったが、1996年の結果は、ルチン含量と生育日数に有意な負の相関が認められた（第5表）。そこで生育期間中、特に登熟期間中の気象条件を考慮に入れることで、各成分含量の相関をより適切に理解することが重要であると考えられる。

第1図 1996年の子実重とルチン含量(A)、蛋白質含量(B)、脂防含量(C)との関係。

□関東育成系統、△北海道・東北、△関東・中部、△近畿・中国、△九州、○カナダ、☆中国。

第2図 1997年の子実重とルチン含量(A)、蛋白質含量(B)、脂防含量(C)との関係。

□関東育成系統、△北海道・東北、△関東・中部、△近畿・中国、△九州、○カナダ、☆中国、△ネパール、△パキスタン。
第6表 ルチン含量と登熟期間の気象条件との相関
および偏相関（n=37）。

<table>
<thead>
<tr>
<th></th>
<th>偏相関</th>
<th>偏相関の固定変数</th>
</tr>
</thead>
<tbody>
<tr>
<td>平均気温</td>
<td>0.750**</td>
<td>平均日射量</td>
</tr>
<tr>
<td>積算温度</td>
<td>-0.741**</td>
<td>積算日射量</td>
</tr>
<tr>
<td>平均日射量</td>
<td>0.329*</td>
<td>積算温度</td>
</tr>
<tr>
<td>積算日射量</td>
<td>-0.751**</td>
<td></td>
</tr>
</tbody>
</table>

*, **: 5%水準，1%水準でそれぞれ有意。
偏相関は単相関から偏相関の固定変数の影響を除いた値。

第7表 各年次の各成分含量と色彩値の相関。

<table>
<thead>
<tr>
<th></th>
<th>酸素</th>
<th>水素</th>
<th>ルチン</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996年（n=38）</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>生育日数</td>
<td>-0.586**</td>
<td>-0.304</td>
<td>-0.064</td>
</tr>
<tr>
<td>千粒重</td>
<td>0.330*</td>
<td>-0.141</td>
<td>0.107</td>
</tr>
<tr>
<td>製粉歩留</td>
<td>-0.039</td>
<td>-0.002</td>
<td>0.020</td>
</tr>
<tr>
<td>1997年（n=62）</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>千粒重</td>
<td>-0.606**</td>
<td>0.396**</td>
<td>-0.072</td>
</tr>
<tr>
<td>製粉歩留</td>
<td>-0.773**</td>
<td>0.478**</td>
<td>0.248</td>
</tr>
</tbody>
</table>

*, **: 5%水準，1%水準でそれぞれ有意。

条件との関連が考えられたため，1996年の生育期間中の平均気温および日射量の推移を図3に，日本の品種と日本の品種と生態型の検定卡ダの品種計37点についてルチン含量と登熟期間中の平均気温，平均日射量，積算温度および積算日射量等の気象条件との相関を調査した結果を第6表に示した。ルチン含量と登熟期間中の平均気温および平均日射量との間に有意な正の相関があった。積算温度および積算日射量との間に有意な負の相関が認められた。一方，気温と日射量との間に相関関係が認められるためルチン含量と気温との相関あるいは日射量との相関を明らかにするため，相互の影響を除いた相関関係数を求めた。それにより，ルチン含量と登熟期間中の平均気温および積算温度との間に有意な正の相関関係があり，積算日射量との間に有意な負の相関関係が認められた。

第7表に各成分含量と色彩値との相関を示した。その結果，ルチン含量とb*との間には両年とも水準の有意な正の相関が認められた。

考察

Kitabayashiら（1995 a）はネパール産の系統のルチン含量が高いと報告している。本研究においても単年度の成績ではあるが「MITEPHAPAL」（ジンサンパン生産番号03088790，38.4 mg/100 gDW）および「PHAPAL」（同03088790，33.8 mg/100 gDW）等供試したネパール産原産の6品種のうち4品種が25.0 mg/100 gDWを上回っており，他の地域の品種よりもルチン含量が高かった（第2図（a））。

Oomahら（1996）はソバ粉の色とフェノール類の含量との間には相関が無いと報告した。しかしながらポリフェ
ノールであるルチンは黄色を呈しているため、黄色の尺度となるβ*との関連が推測されたが、両年ともルチン含量と有意な正の相関が認められたものの、1997年は有意水準が低く、β*からルチン含量を推定できるほどの精度は得られなかった（第7表）。

粗蛋白含量についても品種間差異は有意であった。しかしルチン含量よりも年次相関および遺伝率は高く、遺伝的要因が比較的大きいと考えられた。過去に遺伝的および環境的要因について柴田ら（1979）と大澤・堤（1993）は、蛋白含量は夏栽培より秋栽培の方が高いこと、品種間差異があること等遺伝的および環境的影響を示した。さらに柴田ら（1979）は国内品種より外国品種の方が高い傾向を示したと報告した。しかしながら本研究では粗蛋白含量に関し原産地による明か特徴は認められなかった。ルチンおよび蛋白質は粒の種皮を含む外層部に多く存在するため（鈴木等1987），製粉歩留が高い種類の方がこれらの含有量は高くなると推測されたが、1997年製粉歩留と粗蛋白含量との間に有意な正の相関が認められたのみで、製粉歩留とルチン含量との間には逆に有意な負の相関が認められたこと。さらに1996年製粉歩留と有意な相関は認められなかったことから（第5表），各品種の製粉歩留が成分含量に及ぼす影響は小さい。すなわち製粉歩留の高い品種が高蛋白、高ルチンであるとは限らないと考えられた。

また長谷ら（1982）は米粒が製粉歩留に関係を深くする米を本調査の四体品種と「みやざきおつぶ」が最も低かったと報告した。本研究の供試材料は二体米のみであるが、千粒重と粗蛋白含量との有意な正の相関が両年とも認められたが有意水準が低いこと、千粒重他の成分含量と両年を通した有意な相関が認められなかったことから、粒の大きさが成分含量に及ぼす影響は小さいと考えられた。

粗脂肪含量については有意な年次間の相関が認められなかったこと、さらに分散分析の結果、交互作用、品種よりも年次の影響が著しく大きかったこと等環境に極めて影響されやすいことが示された（第2表）。育木ら（1981）はソバ粉の風味に関係する揮発成分の同定を行った結果、匂いの官能試験評価はキサナール、ノナナール、オクタノール等脂肪の酸化分解の結果生じるアルデヒド類のピークと一致すると報告した。したがって脂肪酸含量は風味に影響する要因として重要である。さらにMazza（1988）はオレイン酸とリノール酸の間には有意なオの相関があること、これらの含有率は品種差異があることから育種的に不飽和度の高いオレイン酸を増やし不飽和度の高いリノール酸を減少させることで貯蔵性の優れた品種が育成できるすることを示唆した。一方、本研究では粗脂肪含量の遺伝率は極めて低く、脂肪酸組成など質的差異と比較して量的な育種は困難である可能性が考えられた。さらに粗脂肪含量についてもルチン含量のよう原産地による特徴は明らかでなかった（第1図、第2図）。

粗蛋白含量および粗脂肪含量は子実重との間に有意な相関は認められなかった。一方ルチン含量については両年とも子実重と有意な負の相関が認められた（第1図、第2図）が、新潟県の夏栽培の場合、収量と有意な正の相関が報告された（Ohsawa and Tsutsumi 1995 a）、栽培地および栽培時期が異なるためと思われるが、子実重と成分含量の関係についてさらに調査の必要がある。

以上分散分析および遺伝率から、ルチン含量、粗蛋白含量および粗脂肪含量は環境による影響を受けやすいことが示された。これらの内ルチン含量が生育日数と相関が認められたため環境要因として生産期間の気象条件との関係について検討した。その結果、ルチン含量と生産期間中の平均気温および積算温度との間に有意な正の相関および偏相関が認められた（第6表）。過去にルチン含量に影響する要因として生産期間中の日照量（小原ら1989）、日照時間（Ohsawa and Tsutsumi 1995a）との関係が指摘されている。Ohsawa and Tsutsumi（1995a）は、夏栽培では開花期の遅い品種のルチン含量が高いと報告した。夏栽培の場合晚生品種の方が生産期間中の温度が高いと考えられ、本研究の結果と一致しているが、これらのことから高温下で成熟する栽培がルチンの蓄積に有利であることが示唆された。また積算日照量との間に有意な負の相関および偏相関が認められたことから、九州の秋栽培においては长期間日照を受けることはルチンの蓄積に有利に働かないと考えられる。以上のことから九州の秋栽培においてはルチンの蓄積に有利な温度の高い時期に生産できる品種の強い早生型品種が高ルチン品種としての一つの条件であると考えられた。本研究において、九州の栽培区の成分特性につき前報（森下・手塚2001）で示した農業関連企業の他の地域と異なる特性が認められなかったが、九州の栽培環境がソバの成分含量に対して他の地域と異なる影響を与えている可能性が考えられた。

引用文献
Breeding of high rutin content common buckwheat,
"SunRutin". Advances in Buckwheat Research (Proc. 8th Intl.
magnetic resonance method for detection of rutin-degrading
enzyme activity in Fagopyrum esculentum and F. tartaricum.
Breeding Sci. 48 :17–21.
森下敬和・手塚隆久 2001. 九州における普通ソバの農業その形質の
年変動と品種間差異. 日作紀 70 :379–386.
長友大・篠原泰二・村谷栄 1982. そば新商品“みやざきおおつぶ”
について. 宮崎農報 29 :293–305.
小原忠彦・大日向洋・村松信之・松建築部 1989. 高速液体クロマ
トグラフィーによるルチンの定量. 食工誌 36 :114–120.
大澤良・堤忠広 1993. そば遺伝資源におけるたんぱく質含量の変異.
育雑 43(別2) :179.

Ohsawa, R. and T. Tsutsuji 1995a. Inter-varietal variations of
rutin content in common buckwheat flour (Fagopyrum es-
Ohsawa, R. and T. Tsutsuji 1995b. Improvement of rutin con-
tent in buckwheat flour. Current Advances in Buckwheat
372.
Oomah, B.D., C.G. Campbell and G. Mazza 1996. Effects of cul-
tivar and environment on phenolic acids in buckwheat.
Euphytica 90 :73–76.
柴田茂久・今井敬・竹生新治郎・宮原英芳 1979. 品種および栽培時
期とソバ粉の成分. 食糧研報 34 :1–7.
鈴木健夫・半田尚子・黒川男一・鈴木與男・坂上孝彦・氏原貴男
1987. そばのルチン含有と分布について. New Food Industry 29 :
29–32.

Varetial Differences of Rutin, Protein and Oil Content of Common Buckwheat (Fagopyrum esculentum) Grains in
Kyushu Area: Toshikazu MORISHITA* and Takahisa TETSUKA (Natl. Agr. Res. Cent. for Kyushu Okinawa Region, Nishigoshi
867–1192, Japan)

Abstract : Research was conducted to define the characteristics of rutin, protein, and oil contents of common buckwheat in the
Kyushu area with the use of local and breeding varieties containing various origins and ecotypes. The analysis of variance
showed that the differences among varieties and years were significant at the 1% level for the rutin, protein, and oil contents.
The range of the varietal differences of rutin content was larger than protein and oil content. Except for protein content,
environmental variation was bigger than the genetic one. There were many high rutin content varieties in Nepal, but varietal
characteristics depending on origin were not found in other origins. It was indicated that a high temperature was advantageous
for rutin accumulation during maturing. There was an inverse significant correlation between grain yield and rutin content and
a significant correlation between protein content and oil content. But it was unclear that a relationship existed between flour
to grain ratio, 1,000 grain weight, and these contents.

Key words : Buckwheat, Genetic resources, Kyushu, Local variety, Oil content, Protein content, Rutin content, Varietal
difference.