堆肥連年施用水田と化学肥料連年施用水田における土壌の理化学的特性の変化と低農薬栽培した水稲の根系、養分収吸、収量

前田忠信・平井英明
（京都大学）

要旨：本研究に除草剤１回と殺虫剤１回の農薬使用という低農薬水稲栽培条件下で、堆肥連年施用（堆肥処理）水田と化学肥料連年施用（化学処理）水田において、1991～2000年の10年間コシヒカリを栽培した。1995年以降における堆肥連用水田と化学肥料連用水田の土壌の理化学的特性の変化と水稲の根系、窒素、リン、カリの養分吸収、収量について検討した。試験開始から5年経過し好天候年の1996年において、堆肥連用・化学肥料区の収量は63.7 kg/haで、化学肥料・多肥区の収量は59.6 kg/haで10年間のそれぞれの処理区の中で最高収量であった。この年から土壌の理化学性が、堆肥連用水田においては、PHの上昇、有効リン酸の増加、土壌三相の気相部分の増加が見られた。堆肥連用区の水稲の養分吸収においては窒素吸収に比較して、相対的にリン酸、カリの吸収が多かった。試験開始から9年、10年目の1999、2000年の土壌の理化学性は堆肥連用水田で変化性がイオンの内、CaとMgが増加したが、有効リン酸は1996年と大差がなかった。これら10年における養分吸収の傾向も1996年とは同様であった。収量については、両年とも好天候であったが、堆肥連用・化学肥料水田で50～52 kg/haと、1996年に比べると著しく低く、化学肥料・多肥区の50～56 kg/haよりやや低かった。200 kg/ha堆肥の連年施用では地力窒素の増加の効果は大きくないが、PHが高く、有効リン酸と交換性イオンの内、CaとMgが増加したことから土壌環境は改善されており、窒素吸収に比較して、リン酸、カリの吸収が多かったことから、堆肥連用水田でも、好天候年で適期に窒素の供給を多くすれば収量増が期待できると示唆された。

キーワード：化学肥料連用水田、コシヒカリ、水稲、収量、低農薬栽培、堆肥連用水田、土壌の理化学的特性、養分吸収。

水稲の低農薬栽培を進めることは、穂稲の健全性を維持向上させる必要がある。1991～2000年の10年間、堆肥連用水田と化学肥料連用水田における低農薬栽培した水稲の収量変動をみると前報（前田2001）において、堆肥連用・化学肥料少肥水田で10年間の平均収穫量は最も高いことを示した。これは堆肥連用により穂稲の健全性が登場期後まで維持されであったためと思われた。特に1996年は63.7 kg/haと低農薬栽培した水稲コシヒカリの収量としては非常に高い水準であった。このことはこの年度が変化にとどまる好天候であったこと、試験開始後6年間で合計2400 kg/ha施用された堆肥により、水稲土壌の肥沃度が変化し高収穫をあげたと考えられる。

水田土壌の有機物施肥基準について、志賀（1984）は炭素と窒素の土壌中の分解蓄積過程から詳しく解説し、一般的に穂稲灰色地下帯において、化学肥料施肥の条件で、堆肥の熱成育により130～200 kg/haが指標になるとしている。堆肥連用水田では土壌の理化学的特性が改善されることは、上沢（1991）が全国的事例で解析しており、山下（1967）は堆肥の連用により、腐植および土壌の理化学的特性が改善されているとして、中田（1980）は肥料三要素と堆肥の長期連用と土地生産力について報告している。山本（1990）は土壌窒素の無機化に関して解説しており、堆肥連用水田における窒素吸収に関して高橋ら（1992a, b）が、堆肥連用により土壌中の無機物窒素が多いと、7月下旬の高温期に水稲の窒素吸収量が最大になること、また有機物施用と窒素の有機物施用の効率的な吸収について森（1987）の報告がある。土壌と水稲のリン酸吸収に関して、河本（1984）が堆肥リン酸の有効化に有機物が大きな役割をはたしており、土壌の種類によりリン酸の肥効異なることを詳しく解説している。鈴木ら（1994）は10～200 kg/haの堆肥を10年連用で水稲の収穫量をみており、化学肥料無施用で60 kg/ha前後の収量を得ている。300 kg/ha以上の堆肥連用が必要で、その場合、土壌中の窒素成分、有効リン酸も多かったとしている。

以上のように堆肥連用と土壌の変化、水稲の窒素あるいはリン酸の量と収穫、堆肥連用と収量等に関し多くの研究が行われている。しかし、堆肥連用水田と化学肥料連用水田の6年目および9、10年目の経年的な土壌の理化学的特性の変化と、低農薬栽培した水稲の窒素の生育と窒素、リン酸、カリの養分吸収、収量、収量成分の相互関係を明らかにした試験はない。作物の収量は主として窒素、リン酸、カリの養分吸収が、水稲の場合はさらに酸化をも含め、生育のそれぞれの時期に、必要量確保されたかどうかによって決まる。土壌中でのこれら成分の供給状態と、これを吸収する水稲の根系および穂稲の吸収量を同時に知ることは重要である。圃場において特に堆肥が連年施用され物質の多い収量増が期待できると示唆された。

2002年7月6日受理。*連絡責任者（〒321-4415真岡市宇都宮大学農学部畑野農場、maedad@cc.utsunomiya-u.ac.jp）。
い水田において、水稲の根系を完全に掘り上げ、洗い出すのは不可能に近い。しかし、限定された条件で、相対的な比較であるが土壌、根、作物の総合的に解明することが、水稲の収穫性向上の重要な手段と考える。

そこで、ここでは堆肥連用施用法と化学肥料施用水田における土壌の理化学的特性の変化と低農薬栽培した水稲の根系、養分吸収、収量を検討した。

材料と方法

栽培法は稲作機械移植栽培法で、4月10日に播種し、育苗期間は20日、播種量は1998年までに栽植密度100株/1m²、1999年以降80株。種子消毒を含む育苗期間中農薬は使用してなかった。移植は5月中旬、6〜8時程度施用田面積で栽植密度は約20株/m²、1株苗3本程度で移植し、除草剤は41回処理剤のカタクリ3kg/haを1996年まで、1997年以降はキックバイ1kg/haを施用し、移植7日後に散布した。イネミズソウムシは6月上旬に成虫発生数を調査し、発生多い場合のみ前田への殺虫剤散布することと、結果的には毎年発生し、トレンボン2kg/haを6月上旬に散布した。本実験での低農薬条件とは、土壌初期の除草剤1回、殺虫剤1回の使用である。積肥区は牛糞、落葉、穀殻、稲殻、変形による熟堆肥500kg/haを1991〜1994年的4年間、1995年以降200kg/haを施用した。施肥区は1991年に同じ堆肥300kg/haが施用され、1992年以降は前年の堆肥還元だけである。化学肥料は無機肥料である。深層施肥施用田面積の施用機を用い、深層部分は稲葉の間隔中央の深さ15cmに18〜20cm、施肥量は、施肥区は窒素全量で0.4〜0.5kg/ha、施肥多区は0.8〜1kg/haである（前田 2001）。

土壤分析は、収量調査を行った付近の表層15cmの土壌を採取後に採取し、pHはガラス電極法（HORIBA製F14）で測定、浸透浸出法により有効リン酸はプレイ第二法で、交換性陽イオンおよびCECについては、原子吸光法および水蒸気蒸留法により測定した。土壤三相分布は100mLの採土用筒を用い各区3反復採取し測定した。

生育調査の草丈、茎数、穂数については各区3反復で1条1株2条10株を6月中旬より2週間おきに穂期前までを行い、掘り取り調査は1996年は7月25日以降4回、1999、2000年は各収穫期に各生育調査地点周辺より平均茎数2株を掘り取り、各部位別に分け80℃で乾燥後乾物重を測定し、粉砕後酸化・過酸化水素法により分解したもの、窒素については水蒸気蒸留法で、リンについてはモリブデン青法で、カリについては原子吸光法で行った。

収量調査は各区3反復で1条1株2条4条、計40株を刈り取り、構成要素の穂数、玄米千粒重は40株の坪刈りより、1穂数、登熟率は坪刈り地点周辺より平均穂数5株の平均値20〜30穂で調査した。

根の調査は、1996年の掘り取り調査時、根を中心に直径2cmのステンレス円筒管で、深さ20cmまで掘り取り、洗浄後地上部より切り離し、乾燥後乾物重を調査した。また8月16日の根系の調査は、乾燥重調査とは別に各処理区3株、同じステンレス円筒管で同様に採取後、丁寧に洗い出しを行い、株を個体に分割し1次根数を数え、1個体から無作為に40本の1次根を選び、1次根長を測定後、ルートシッチャー（Commonwealth Aircraft社製）で40本の根総根長を測定し、根総長1次根長比を出した。残りの1次根については全体で根総長を測定した。

結果

1. 6年経過後の水田土壌の理化学的特性の変化と低農薬栽培した水稲の根系、養分吸収および収量

試験開始から6年目1996年の堆肥連用および化学肥料施用水田土壌の理化学性を第1表に示した。堆肥連用水田では化学肥料施用に比べてpHがやや高い傾向を示し、陽イオン交換容量（CEC）は明らかに低く、交換容量陽イオンのCaは有意に高く、Mg、Kは高く、Naはやや高い傾向であった。また、堆肥連用水田では有機物リン酸が高いことが明らかに増加し、三相分布の気相の割合が高かった。

第2表に幼穂形成期以降の地上部（T）、根（R）乾物重とT/R比の推移を示した。堆肥連用、化学無施用区および堆肥連用、化学施肥区と化学肥料施用・多肥区の間においては、概ね地上部乾物重は同程度であったものの、根乾物重とT/R比は堆肥連用水田が、いずれも時間経過と共に減少し、高い傾向を示した。第3表に登
第2表 幼穂形成期以降の地上部および根乾物重, T/ R比の推移(1996年),

<table>
<thead>
<tr>
<th>処理区</th>
<th>7月25日</th>
<th>8月16日</th>
<th>9月6日</th>
<th>9月20日</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>地上部 (g/㎡)</td>
<td>地上部 (g/㎡)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>堆肥処理・肥無施用</td>
<td>281 ± 4</td>
<td>735 ± 13</td>
<td>931 ± 49</td>
<td>1046 ± 11</td>
</tr>
<tr>
<td>T/R比 (g/g)</td>
<td>21.6 ± 0.3</td>
<td>28.2 ± 0.9</td>
<td>22 ± 2.6</td>
<td>22.3 ± 0.9</td>
</tr>
<tr>
<td></td>
<td>地上部 (g/㎡)</td>
<td>地上部 (g/㎡)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>堆肥処理・化学施肥</td>
<td>518 ± 27</td>
<td>932 ± 6</td>
<td>1259 ± 8</td>
<td>1268 ± 63</td>
</tr>
<tr>
<td>T/R比 (g/g)</td>
<td>29.4 ± 1.2</td>
<td>34.4 ± 1.3</td>
<td>31.9 ± 1</td>
<td>23.9 ± 1.1</td>
</tr>
<tr>
<td></td>
<td>地上部 (g/㎡)</td>
<td>地上部 (g/㎡)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>化学施用</td>
<td>407 ± 25</td>
<td>791 ± 62</td>
<td>1117 ± 21</td>
<td>1068 ± 77</td>
</tr>
<tr>
<td>T/R比 (g/g)</td>
<td>32.2 ± 2.6</td>
<td>36 ± 3.5</td>
<td>30.9 ± 0.3</td>
<td>24.5 ± 0.6</td>
</tr>
<tr>
<td></td>
<td>地上部 (g/㎡)</td>
<td>地上部 (g/㎡)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>化学施用</td>
<td>411 ± 25</td>
<td>881 ± 76</td>
<td>1319 ± 147</td>
<td>1379 ± 16</td>
</tr>
<tr>
<td>T/R比 (g/g)</td>
<td>30.1 ± 0.4</td>
<td>35.6 ± 3.4</td>
<td>31.2 ± 0.9</td>
<td>29.2 ± 1.6</td>
</tr>
</tbody>
</table>

se は標準誤差を示す。

第3表 登熟初期(8月16日)根系の1次根数, 總根長, 總根長/1次根数比, 總根長/1次根長比 (1996年),

<table>
<thead>
<tr>
<th>処理区</th>
<th>1次根数</th>
<th>總根長</th>
<th>總根長/1次根数比</th>
<th>總根長/1次根長比</th>
</tr>
</thead>
<tbody>
<tr>
<td>堆肥処理・化学無施用</td>
<td>373 b</td>
<td>88.6 b</td>
<td>0.24 a</td>
<td>3.38 a</td>
</tr>
<tr>
<td>堆肥処理・化学施肥</td>
<td>515 a</td>
<td>103.2 ab</td>
<td>0.20 b</td>
<td>3.00 ab</td>
</tr>
<tr>
<td>化学施用</td>
<td>391 b</td>
<td>98.3 ab</td>
<td>0.25 a</td>
<td>3.14 ab</td>
</tr>
<tr>
<td>化学施用</td>
<td>551 a</td>
<td>110.9 a</td>
<td>0.20 b</td>
<td>2.89 b</td>
</tr>
</tbody>
</table>

各項目の同一のアルファベットはダンクンの多重検定において5%水準で有意差のないことを示す。

第4表 堆肥処理および化学施用水田において低農薬栽培した本稲の3要素成分含有率 (1996年),

<table>
<thead>
<tr>
<th>処理区</th>
<th>N (%)</th>
<th>P₂O₅ (%)</th>
<th>K₂O (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>登熟初期(8月16日)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>堆肥・化学無施用</td>
<td>1.90 c</td>
<td>0.46 bc</td>
<td>0.94 a</td>
</tr>
<tr>
<td>堆肥・化学施肥</td>
<td>2.25 b</td>
<td>0.58 ab</td>
<td>1.66 a</td>
</tr>
<tr>
<td>化学施用</td>
<td>1.95 c</td>
<td>0.45 c</td>
<td>0.93 a</td>
</tr>
<tr>
<td>化学施用</td>
<td>2.56 a</td>
<td>0.61 a</td>
<td>1.02 a</td>
</tr>
<tr>
<td>収穂期(9月20日)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>堆肥・化学無施用</td>
<td>0.94 c</td>
<td>0.32 a</td>
<td>0.84 c</td>
</tr>
<tr>
<td>堆肥・化学施肥</td>
<td>1.22 ab</td>
<td>0.38 a</td>
<td>0.93 bc</td>
</tr>
<tr>
<td>化学施用</td>
<td>1.15 b</td>
<td>0.35 a</td>
<td>0.96 b</td>
</tr>
<tr>
<td>化学施用</td>
<td>1.34 a</td>
<td>0.44 a</td>
<td>1.12 a</td>
</tr>
</tbody>
</table>

各項目の同一のアルファベットはダンクンの多重検定において5%水準で有意差のないことを示す。

熟熟初期の1次根数と縁長, 縁長長/1次根数比, 縁長長/1次根長比を示した。堆肥の1次根数は地上部生育が大きかった。堆肥処理・化学施用区と化学施用・多施区で有意に多かったが, 1堆肥あたりの1次根数では有意差がなかった。堆肥の縁長長は堆肥処理・化学無施用区が化学施用・多施区より有意に短かった。堆肥の縁長長は地上部生育量の大小の堆肥処理・化学無施用区と化学施用・多施区で長かったので, これらの区では縁長長/1次根数が有意に大きかった。堆肥処理・化学施用区は化学施用・多施区と比較し, 縁長長は短い傾向を示したが縁長長/1次根長比は大きく, 2次根以下の根長の割合が高かったことを示した。

第4表に登熟初期と収穂期の部位別3要素成分含有率を示した。窒素含有率は堆肥量と土壌からの供給量を反映し, 登熟初期の葉身及び葉鞘+茎では化学施用・多施が最も高く, つぎに堆肥施用・化学施用区が高かった。この傾向は収穂期でもほぼ同様であった。稲の登熟初期は処理区間で総平均であったが, 収穂期は堆肥施用区が低くなる傾向であった。リン酸含有率については, 葉身, 葉鞘+茎, 穂にとも, また登熟初期, 収穂期とともに堆肥施用区で高く, 化学施用区では低かった。カリ含有率については登熟初期の葉身についてはリン酸と同じく堆肥施用区で高い傾向で, 葉鞘+茎では窒素と同じく, 施肥量の多い区で高かったが, 収穂期については同様の傾向があるもの
の、すべての部位で有意差が無くなった。

1996年の収量および収量構成要素を第5表に示した。1996年の好天候であり、前報で示したとおり穂穂の発生も少なく、堆肥連用・化学少肥区の精玄米量63.7 kg/a および化学連用・多肥区の59.6 kg/a は10年間で、それぞれの施肥法での最高収量であった。堆肥連用・化学少肥区は堆肥連用・多肥区に比べ全年にその収量、収穫が有意に高かった。堆肥連用・化学少肥区の収穫が堆肥連用・多肥区に比べ低かった要因を収量構成要素から見ると、登熟歩合が同程度で玄米千穗重が有意に低いこと、1穗穂数が多いうことによるm²当たり穂数が多かったことによると考えられた。一方、堆肥連用・化学無施肥区の収穫は43.3 kg/a で堆肥連用・化学少肥区より約20 kg/a 低く、堆肥連用・化学少肥区は化学連用・多肥区より約13 kg/a 低かった。これらは登熟歩合が高かったが、好天候にかかわらず穂数が70〜80 本/m² 少なかったため、m² 当たり穂数の不足による低収と考えられる。

2. 堆肥連用および化学連用水田の9, 10年目（1999, 2000年）における土壌理化学性の違い、水稲の収穫

期収高と水稲の収穫、収量構成要素

1999, 2000年の土壌の理化学性について第6表に示した。この表を第1表を参考に、堆肥連年施用および化学肥料年施用水田における土壌の理化学性の変化を見ると、pH については明らかに堆肥連用水田で高くなっていた。CEC については1996年と同様に明らかに差は見られなかったが、交換性陽イオンのCa については両年とも堆肥連用

用水田では有意に多く、Mg, Na は堆肥連用水田で多い傾向を示していた。K は1999年は堆肥連用水田で多い傾向であったが、2000年では逆の傾向であり、一定の傾向は見られなかった。有機態リン酸はこれ2年間も堆肥連用水田で多かった。

1999, 2000年の養分吸収を収穫期収高含有率で第7表に示した。窒素含有率については、両年とも窒素供給の多いと考えられる堆肥連用・化学少肥区と化学連用・多肥区で菜身、葉鞘+茎、穂とともに高い傾向を示した。リン酸含有率については2年とも、いずれの部位も堆肥連用水区で高かった。カリ含有率は穂については両年とも、菜身については2000年のみ有意に堆肥連用水区で高かったが、葉鞘+茎では両年とも有意な差は無かった。

1999, 2000年の収量及び収量構成要素を第8表に示した。1999年は7, 8, 9月とも高温、多日照であり、8月8月の日が続き、最高気温の平均は30℃を越えた。そのため多日照であったが、いずれの区とも穂無生産が低下し穂穂が低く、1996年に比べ収穫は著しく低かった。

稲穂数は1996年に比べそれぞれの区で少なかった。1穂穂数、玄米千穂重も低く、好天候年であったが、化学連用・多肥区と堆肥連用・化学少肥区で穂穂も発生があり登熟歩合がやや低かった。2000年も好天候で1999年より温度、日照とも良好で、穂穂の発生はほとんどなかった。堆肥連用・化学無施肥区と化学連用・少肥区は1996年と比べ穂数は少ないが1穂穂数が多く、収穫がほぼ同水準であり、化学連用・多肥区では1996年に比べ穂数が少なく、収穫は56.2 kg/a でやや低かった。堆肥連用・化学少肥区の収穫は52.2 kg/a と低く、1996年との差は11.5 kg/a
第7表 堆肥連用および化学連用水田において低農薬栽培した水稲の収穫期3要素成分含有率

<table>
<thead>
<tr>
<th>処理区</th>
<th>N (%)</th>
<th>P2O5 (%)</th>
<th>K2O (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>葉身</td>
<td>根部</td>
<td>葉身</td>
</tr>
<tr>
<td>1999年</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>堆肥</td>
<td>1.02 b</td>
<td>0.40 b</td>
<td>1.01 a</td>
</tr>
<tr>
<td>化肥</td>
<td>1.27 a</td>
<td>0.47 a</td>
<td>1.03 a</td>
</tr>
<tr>
<td>化肥・少肥</td>
<td>1.16 b</td>
<td>0.39 b</td>
<td>1.02 a</td>
</tr>
<tr>
<td>化肥・多肥</td>
<td>1.26 a</td>
<td>0.44 ab</td>
<td>1.03 a</td>
</tr>
</tbody>
</table>

2000年
<table>
<thead>
<tr>
<th>処理区</th>
<th>N (%)</th>
<th>P2O5 (%)</th>
<th>K2O (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>葉身</td>
<td>根部</td>
<td>葉身</td>
</tr>
<tr>
<td>堆肥</td>
<td>0.91 ab</td>
<td>0.36 a</td>
<td>0.96 c</td>
</tr>
<tr>
<td>化肥</td>
<td>0.99 a</td>
<td>0.41 a</td>
<td>1.03 ab</td>
</tr>
<tr>
<td>化肥・少肥</td>
<td>0.74 c</td>
<td>0.32 a</td>
<td>0.98 bc</td>
</tr>
<tr>
<td>化肥・多肥</td>
<td>0.85 bc</td>
<td>0.51 a</td>
<td>1.08 a</td>
</tr>
</tbody>
</table>

処理区名は第1表に準じる。
各項目の同一のアルファベットはダンカンの多重検定において5%水準で有意差のないことを示す。

第8表 堆肥連用および化学連用水田における低農薬栽培した水稲の収量、収穫構成要素

<table>
<thead>
<tr>
<th>処理区</th>
<th>全量 (kg/a)</th>
<th>粪栄養比 (kg/a)</th>
<th>精米量 (kg/a)</th>
<th>穗数 (本/i)</th>
<th>1穂穂数 (株/10穂)</th>
<th>受粉歩合 (%)</th>
<th>玄米千粒重 (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999年</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>堆肥</td>
<td>110.7 bc</td>
<td>0.86 b</td>
<td>39.6 b</td>
<td>212 b</td>
<td>105 a</td>
<td>22.3 bc</td>
<td>88.4 a</td>
</tr>
<tr>
<td>化肥</td>
<td>128.5 a</td>
<td>0.96 a</td>
<td>50.0 a</td>
<td>274 a</td>
<td>110 a</td>
<td>30.1 a</td>
<td>80.5 b</td>
</tr>
<tr>
<td>化肥・少肥</td>
<td>106.4 c</td>
<td>0.89 c</td>
<td>40.5 b</td>
<td>224 b</td>
<td>90 b</td>
<td>20.2 c</td>
<td>88.2 a</td>
</tr>
<tr>
<td>化肥・多肥</td>
<td>125.5 ab</td>
<td>0.97 a</td>
<td>49.7 a</td>
<td>268 a</td>
<td>93 a</td>
<td>24.9 b</td>
<td>83.4 b</td>
</tr>
<tr>
<td>2000年</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>堆肥</td>
<td>109.5 b</td>
<td>1.02 b</td>
<td>43.0 c</td>
<td>201 c</td>
<td>111 b</td>
<td>22.3 b</td>
<td>88.1 a</td>
</tr>
<tr>
<td>化肥</td>
<td>133.6 a</td>
<td>1.02 b</td>
<td>52.2 ab</td>
<td>251 ab</td>
<td>126 a</td>
<td>31.6 a</td>
<td>84.1 a</td>
</tr>
<tr>
<td>化肥・少肥</td>
<td>108.2 b</td>
<td>1.17 a</td>
<td>45.6 bc</td>
<td>213 bc</td>
<td>116 ab</td>
<td>24.7 b</td>
<td>88.0 a</td>
</tr>
<tr>
<td>化肥・多肥</td>
<td>136.2 a</td>
<td>1.05 b</td>
<td>56.2 a</td>
<td>276 a</td>
<td>125 a</td>
<td>34.5 a</td>
<td>84.5 a</td>
</tr>
</tbody>
</table>

処理区名は第1表に準じる。
各項目の同一のアルファベットはダンカンの多重検定において5%水準で有意差のないことを示す。

と大きかったが、これは穂数の不足と受粉歩合、玄米千粒重がやや低かったためである。

化学肥料連用水田の多肥区においては、毎年塩素、リン酸、カリは多量に施用されているが、土壌中の有効態リン酸量は、堆肥連用水田に比べ少なかった。土壌中の移動の少ないリン酸については、土壌と、あるいは窒素、カリ吸収との関連性を知る必要がある。そこで土壌の有効態リン酸量と収穫期の穂のリン酸含有率との関係を第1図に示した。土壌中の有効態リン酸量が高いと穂のリン酸含有率が高い傾向を示し、5%水準で有意な相関が見られた。次に穂の窒素含有率とリン酸含有率の関係を第2図に示した。穂の窒素含有率が高いとリン酸含有率が高い傾向が見られるが、相関に有意でなかった。堆肥連用区では、化

第1図 土壌の有効態リン酸量と穂のリン酸含有率との関係

$r=0.621^*$

* 5%水準で有意

堆肥連用・化学無施用、堆肥連用・化学少肥、堆肥連用・少肥、堆肥連用・多肥、化学連用・少肥、化学連用・多肥、

吸収に比較してリン酸、カリの吸収量が多いという特徴があった。
考察

堆肥連用水田の土壌の理化学的特性の変化を化学連用水田と比較してみると、6年目の1996年では、堆肥連用水田で土壤のpHがやや高く、有効態リン酸が多く、土壤三相の気相割合が高くなっていた。9、10年目の1999、2000年においてもほぼ6年目と同様で土壤のpHは高く、有効態リン酸は多かった。CECは10年目で堆肥連用水田で高く、交換性陽イオンのCa、Mgは6、9、10年目とも堆肥連用水田で高かった。これらの結果から、年間堆肥200kg/a施用による土壌での畳畝効果は大きく、肥沃度を維持する程度と思われ、1999年、2000年とも好天候年であったが堆肥連用水・化学連用水田では1996年の収量に及ばず、堆肥連用水・化学連用水区においては収量が著しく低かった。1996年の堆肥連用水・化学連用水の収量が高かったのは、1991～1994年まで施用された年間堆肥500kg/aの畳畝効果によって窒素供給が多かったから、堆肥の有効態リン酸も多く、窒素吸収に比較してリン酸、カリの吸収量が多かったためと考えられる。

水稲の登熟期における窒素とリン酸、カリの吸収と登熟との関係について、本谷（1961）は東北の火山灰水田において、化学肥料を用い詳しく検討している。ここでは窒素施肥量が多く窒素吸収が多いが、リン酸施肥量が多くてもリン酸吸収量はあまり変わらず、カリ吸収量は少ない。リン酸吸収量、カリ吸収量が少ないと登熟は抑制されるとしている。多くの場合、登熟期に窒素吸収量が多いと光合成量が増加し、全乾物量は増加するが、山口ら（1995）は葉身窒素濃度と粒重増加との関係は、登熟前半では葉身窒素濃度が高いほど稲米千粒重は小さかったことを報告

第2図 稲の窒素含有率とリン酸含有率との関係

第3図 稲のカリ含有率とリン酸含有率との関係

しておると、過剰な窒素吸収は稲重の増加には結びつかない。このように化学肥料の施用による窒素、リン酸、カリの吸収量と登熟の関係についての検討は多い。しかし、堆肥連年施用による堆肥の効果と、登熟期の窒素、リン酸、カリの吸収量と登熟の関係についての検討は少ない。

堆肥連用水・化学連用水区において、m²当たり株数が多いにもかかわらず登熟が良いが、穂穂比が高く、収穫量が多くなったのは、堆肥連用水・化学連用水区ではなるべくリン酸、カリの吸収量を多かったことに関係すると考えられるが、その要因として、化学連用水・化学連用水区と比較して、地上部乾物重は同程度であったが、根の乾物重が軽かったため、T/R比が大きく、効率的な根系を形成していたと推察された。また、総根長/1次根長が大きかったことから、2次根以下の細根が多いと推察された。これは堆肥連用水区で、根系の洗い出し時の観察では、有機物中に細根が多く、根の分離の困難であったことからも推測されるが、堆肥連用水区と根の発育については明確な傾向はつかめなかった。米山ら（1990）は根囲が多いとリン酸の吸収が多いこと、韓ら（1998）は有機物施用で根張りの向上と根系活力が増大すること、平井ら（2000）は堆肥連用水区の水稲の根色は健全性を示す褐色の根面積が多いことを報告している。これらのことから、堆肥連用水により、水稲の根系は細根が多く登熟期まで健全で、有効態リン酸の多い土壌より、リン酸を多く吸収し、同時にカリの吸収も多かったと考えられる。堆肥連用水区の土壌とイネを結ぶ根系、根圏微生物とケイ酸を含む各種養分の吸収に関しても、さらに詳細を明らかにすることが今後の課題と考えられる。
Effects of Continuous Application of Farmyard Manure on Physico-chemical Characteristics of the Soil and the Root System, Nutrient Absorption, Yield of Rice Cultivated with Minimal Agricultural Chemicals: Tadanobu MAEDA* and Hideaki HIRAI (University Farm, Utsunomiya Univ., Moka 321-4415, Japan)

Abstract: From 1991 to 2000, a rice cultivar Koshihikari was grown in the field, with either farmyard manure or chemical fertilizer continuously applied using a minimum of agricultural chemicals. After six years of continuous application of the manure, grain yield was the highest (63.7 kg/a) in the field supplemented with a small amount of chemical fertilizer. Continuous application of the farmyard manure increased the pH, available phosphorus content and gas phase of the soil, and also the uptake of phosphorus and potassium by plants although it slightly decreased the nitrogen absorption. Extension of the period of continuous application of the farmyard manure beyond five years did not change the soil properties or nutrient absorption by plants, but decreased the grain yield. Continuous application of 200 kg/a manure is inadequate for raising the soil fertility, but it may be possible to increase the yield by applying nitrogen at appropriate stages, because the continuous application of farmyard manure improved the soil conditions and increased the uptake of phosphorus and potassium by plants.

Key words: Chemical fertilizer, Continuous application of farmyard manure, Culture with minimal agricultural chemicals, Koshihikari, Nutrition uptake, Rice, Soil, Yield.