伝導冷却高温超電導コイルの熱的安定性評価
- 熱的安定性解析 -

田嶋 勝司*1, 栗山 透, 猿川 英史*1, 岡村 哲至*1, 林 秀美*2, 岩熊 成卓*3, 船木 和夫*3

Thermal Stability of Conduction-cooled HTS Coils
- Thermal Stability Analysis -

Kenji TASAKI, Toru KURIYAMA, Hidefumi INOTSUME*1, Tetsuji OKAMURA*1, Hidemi HAYASHI*2, Masataka IWAKUMA*3 and Kazuo FUNAKI*3

Synopsis: In order to quantitatively evaluate the thermal stability of conduction-cooled HTS coils, thermal runaway currents of a conduction-cooled HTS single-pancake coil were measured at various temperatures and several cooling conditions, and numerically calculated using a calculus of finite differences. Calculated results were in good agreement with the experimental ones. A sensitivity analysis of thermal runaway currents for various physical values was also carried out. The thermal conductivity, specific heat and n-value of an Ag-sheathed Bi2223 wire do not significantly affect the thermal runaway currents of the coil. However, the critical current of an Ag-sheathed Bi2223 wire strongly affected the thermal runaway currents. Therefore, more precise critical current data should be prepared in the thermal stability analysis of conduction-cooled HTS coils.

Keywords: HTS coil, thermal stability, conduction-cooled coil, thermal runaway

1. はじめに

これまでに、Bi2223銀シース線材で巻線したシングル パンケーキコイルを伝導冷却方式で冷却したときの熱暴走 現象について、実験的に調査した2。本研究の目的は、伝 導冷却高温超電導コイルの熱的安定性について定量的に評 価可能なことを示し、その結果を実機コイルの設計に反映 することである。したがって、本論文では、実験で用いた 伝導冷却シングルパンケーキコイルをモデル化し、数値解析 により熱暴走現象を検証し、実験結果と比較検討を行っ たのでその結果について記述する。また、最後に数値解析 の精度を維持するためにどの物性値の正確性が重要である かという点についても言及する。

2. 解析モデル

2.1 モデル要素について

Fig. 1 に示すように、シングルパンケーキコイルを径方向に 42 等分割（Fig. 1 では、簡略化して径方向 10 等分割と して図示）。周方向は 32 等分割した。コイル軸方向の 分割は行わず、要素数 1 とした。また、Fig. 2 に示すよう にアルミ冷却板を接着した部分については、コイル部、エ ポキシレジン部および冷却板部をそれぞれ要素数 1 と した。当該部分の実際の構成は、上部よりアルミ冷却板、 エポキシ樹脂、窒化アルミニウム、エポキシ樹脂、シングル パンケーキコイルとなっているが、解析上の簡略化のために、 2 層のエポキシ樹脂を 1 層化、アルミ冷却板と窒化アルミ ウと要素として一体化した。Fig. 1 およびFig. 2 に示す 各要素において、要素内で発生するプラススフロー抵抗 に伴うジュール発熱、接続する要素間の熱伝導を考慮し て、直流電流通電時のシングルパンケーキコイルの安定性
Fig. 1 Mesh elements for the thermal stability analysis of a conduction-cooled Bi2223 single-pancake coil.

Fig. 2 Mesh elements at the aluminum cooling plate.

要差分法で解析した。

2.2 熱伝導について

式(1)において、比熱Cおよび熱伝導率λについては、材料構成に基づいた合成値とした。各構成材料の比熱の温度依存性はFig. 3に、熱伝導率の温度依存性はFig. 4にそれぞれ示す。なお、熱伝導率については、異方性を考慮して、コイル径方向、コイル周方向の熱伝導率を、それぞれλrおよびλθと表示している。

\[C(T) \frac{dT}{dt} = V(\lambda(T)\nabla T) + Q \] (1)

ここで、各要素でのフラックスフロー発熱を式(2)に基づいて解析する際に、磁場をいかに与えるかが問題である。なぜなら、シングルパンケーキコイルの場合は、

\[Q = EJ_{op} \] (2)

\[E = 10^{-14} \left(\frac{J_{op}}{J_c(B,\phi,T)} \right) \] (3)
シェース線材内部での磁場分布が大きく、どの場所の磁場を
選択するかによって と が大きく変化するからである。
そこで、本研究では、銀シェース線材内部の電流分布は
一様ではなく、銀シェース線材内部の磁場分布に応じて電流
分布が生じると考え、Fig. 5 に示すように、銀シェース線材
を Fig. 1 で示す z 方向に 6 分割し、各分割セクションで電流
を計算して、各分割セクションでの電流が一致するように
セクション内に流れる電流 を解析により求めた、各分割セクションでの電流は、式(4)で表される。な
お、式(4)で示される および は、各分割セクションでの電流、温度より求められるローカルな臨界電流および
値である。各分割セクションに流れる電流 の合計
は銀シェース線材に流れる電流 を等しいので、式(5)で表
される関係が成り立つ、式(4)を、 を求める式に変形
し、式(5)に代入すると、式(6)となる。

\[
E = 10^{-4} \left(\frac{I_c}{I_{on}(B, \phi, T)} \right)^{\alpha(B, \phi, T)} \quad (n=1,6) \tag{4}
\]

\[
I_{op} = \sum_{n=1}^{6} I_n \quad \tag{5}
\]

\[
I_{op} = E \times 10^4 \int_{B, \phi, T} I_c(B, \phi, T) \quad \tag{6}
\]

(6)の電流 を、ニュートン法を用いて求めた。このよう
にして求めた電流 を式(2)に代入し、各要素でのフラッ
クスフロー抵抗による発熱項を導き出した。

2.4 冷却条件について
シングルパンケーキコイルの冷却については、Fig. 2
に示すように、アルミ冷却板をシングルパンケーキにエポキ
シ樹脂で接着した構成とし、アルミ冷却板上を温度の固定
端とした。

2.5 ヒーター印加による確認試験
Fig. 3 および Fig. 4 で設定した比熱および熱伝導率の妥
当性を評価するために、シングルパンケーキコイルの一部
に取り付けられたヒーター（参考文献 1）の Fig. 4 番の
加熱したときのコイル内部の温度分布を測定し、その測定
結果と解析結果を比較した。
本実験では、参考文献 1 の Fig. 4 に示すアルミ冷却板
温度（C4）を一定温度で制御した状態で、ヒーターを約 2
W 印加したときのコイル温度（C1 ～ C3）を測定した。
Fig. 6 にコイル初期温度 30.6 K、ヒーター印加熱量 1.945
W のときのコイル温度時間変化の実験結果を示す。Fig. 6
で、実検査結果、破線が解析結果を示している。ヒー
ター印加熱 40 秒後に温度分布がほぼ定常になっているが、
最終到達温度については実験結果と解析結果とはほぼ
一致しており、温度上昇の差が以下である。この結果、熱伝導率については Fig. 4 に示す関数が実
際の熱伝導率とほぼ等しい値を示しているといえる。一
方、過渡的応答については、実験のほうが解析より早く温
度上昇しており、実際の比熱は Fig. 3 に示す関数より小さいと考えられる。ここで、後述するように 20 K
以上の温度での熱暴風電流を検討する場合には、比熱が熱
暴風電流に及ぼす影響が比較的小さいことから、本解析で
は、Fig. 3 での関数を使用した。

Fig. 7 にコイル初期温度が 20 K, 30 K, 40 K, 50 K の
際に 1.945 W のヒーターを印加した場合は C1 ～ C4 の最終
到達温度の実験値および解析値を示す。この実験
値を示し、線は解析値を示している。各温度ともに、実験
値と解析値とは温度上昇の T に関して5%以内の精度で一致
しており、広い温度範囲で Fig. 4 に示す熱伝導率が妥当で
あることがわかった。

Fig. 6 Heat application test results (Initial coil temperature: 30.6
K, heater output power: 1.945 W).

Fig. 7 Heat application test results (Final temperatures at C1-C4
when heater output power is 1.945 W).
3. 冷却板1枚の場合の熱的安定性解析

前章での検討の結果、解析に用いた構成材料の物性値、含有比率、寸法および解析コードの妥当性が示されたので、本章では、実際にシングルバケーキコイルの熱的安定性解析を実施した。本章では、参考文献1)に示す実験で行ったアルミ冷却板1枚の場合の解析を実施し、実験結果との比較検討を行った。

3.1 熱暴走電流の解析結果と実験結果との比較

参考文献1)のFig. 4に示す冷却割成（冷却板1枚）でのシングルバケーキコイルの熱暴走解析を実施した。本解析では、コイル電流0Aからステップ的に設定電流値に達するものとした。コイル初期温度30.6Kで、コイルに電流を298.3Aおよび298.4A通電したときの温度変化とコイル電圧を解析した結果をFig. 8およびFig. 9に示す。

298.3Aの場合は、通電初期にフラックスフロー発熱によってコイル温度およびコイル電圧は上昇するものの、両者が通電開始約2,500秒後にはほぼ定常値に収束している。一方、298.4Aの場合は、通電開始3,000〜4,000秒後にも温度および電圧の時間変化がd²T/dt²>0およびd²V/dt²>0の傾きで上昇し始め、5,000秒を超えてから変化が急激になり熱暴走を示している。したがって、解析によって求められた30.6Kでの熱暴走電流は298.4Aである。

参考文献1)のFig. 5(a)およびFig. 5(b)に示すコイル温度30.6Kでの実験結果と比較すると、実験での熱暴走電流値は298Aに対し、解析結果は298.4Aであり、ほぼ一致している。また、実験では1Aの急変で電流を増加させ、熱暴走電流測定を実施しているので、0.1Aの急変で熱暴走電流評価を実施した解析結果と厳密に比較することとはできないが、熱暴走電流より1A低い297Aでのコイル電圧の収束値が2.4mV（参考文献1)のFig. 6(a)参照）であるのに対し、熱暴走が発生していない297.3Aでの解析結果では、コイル電圧の収束値が2.1mVと比較的近い値を示している。また、C1、C2およびC3の温度について、実験では32.1K、31.7Kおよび31.3Kであるのに対し、解析では32.4K、32.1Kおよび31.6Kと0.3〜0.4Kの誤差範囲で収まっている。また、C1-C3間の周方向の温度差については、実験、解析ともに0.3Kで一致している。以上の結果より、解析は実験を比較的良好に再現できていると考えられる。

解析の精度をさらに詳しく確認するために、コイル温度20K、40K、50Kについても同様の熱暴走解析を実施した。熱暴走電流の温度依存性を表したグラフをFig. 10に示す。20Kから50Kまでの広い温度範囲で熱暴走電流の実験値と解析値がほぼ一致しており、熱暴走電流の定量的評価が可能であることを確認することができた。ただし、20Kでは、実験値が解析値を5%程度下回っている。この原因としては、解析精度の問題とも考えられるが、20Kにおける実験値の精度の問題であると考えている。20Kの実験では、熱暴走直前の発熱量と冷却機の冷
凍能力がほぼ同等であり、熱暴走直前で温度制御してい
る C4 の温度の 0.1 K 程度の上昇が観測された。また、再
現性を試みたが、熱暴走直前の温度制御が不十分となり再
現性を確認することができなかった。以上の実験結果か
ら考察して、20 K における実験精度に原因があると考え
ている。しかし、実験値と解析値との結果は比較的乖離し
た 20 K においても、差は 5%以下であり、良い精度で解
析することができたことが示された。

3.2 熱暴走発生時のコイル内温度分布について

上述のように、解析結果は実験結果を良好再現可能であ
ることが示された。ここでは、熱暴走発生時のコイル内温
度分布をさらに詳細に検討した。コイル温度 30.6 K、コ
イル電流 299.0 A のとき、Fig. 11(a)、(b)および(c)にお
ける径方向の温度分布の時間変化をそれぞれ Fig. 11(a),
(b)および(c)に示す。ここで、A はアルミ冷却板から最も
遠い側方向のポイント、B は同じく最も近い側方向のポイ
ント、C は A と C の中間である。また、図にそれぞれ
径方向 42 分割の要素のうち、内径から順番に要素
#1、7、14、21、28、35、42 の 7 箇所をビックアップし、
プロットしている。Fig.11(a)において、要素#28、すなわ
ちコイル径方向の中央部より外径寄りの要素部が最も温度
が高い推移している。A が最も冷却板から遠く位置してい
ることから、A の要素#28 近辺が熱暴走の発端になっている
と考えられる。一方、Fig.11(b)および(c)を見ると、B,
C と冷却板に近づくほど、温度は相対的に低くなっている
が、最も冷却板に近い C でさえ、通電開始 1,000 秒を超え
たあたりから、温度上昇が \(d^2T/dt^2 > 0 \) のカーブに転じてイ
る。この解析条件の場合、温度上昇が \(d^2T/dt^2 > 0 \) の傾きに
転じる熱暴走現象の初期段階では、シングルバンケージコ
イルは全体的に温度上昇している。一方、温度上昇の傾き
が急激に増加する熱暴走現象の中期段階での温度分布変化
については Fig.12 (a) (b) (c) に示す。Fig. 12(a)は内部
の最高温度が 35 K に達した通電開始 1,178 秒後のコイ
ル内温度分布、Fig. 12 (b) に同じく 40 K に達した通電開始
1,239 秒後のコイル内温度分布、Fig. 12 (c) は同じく 45 K
に達した通電開始 1,242 秒後のコイル内温度分布である。
通電開始後、コイル内部の最高温度が 30 K から 35 K に達
するまでに 1,180 秒以上を要しているのに対し、35 K か
ら 40 K は 61 秒、40 K から 45 K では 53 秒と、急激に温度上
昇率が増加している。また、熱暴走現象の初期段階では、
コイル全体で緩やかに温度上昇していたのに対し、中
期段階では、アルミ冷却板から最も遠れたローカルな部位
で急激な温度上昇が起こっている。この段階では、電流遮断
などのコイル保護措置をとらずに通電を継続すると、数秒
のうちにコイル焼損という熱暴走の最終段階に至ってしま
う。本研究の目的の一つは、伝導冷却被温超電導コイルが
焼損という最悪の事態に陥ることを防ぐことである。この
観点から考察すると、コイルのクエンチ保護（熱暴走保
護）動作は、熱暴走現象の初期段階、すなわち温度上昇が
\(d^2T/dt^2 > 0 \) の傾きに転じる前後に行うべきであることが示
された。

以上、解析により冷却板 1 枚で冷却する構造のシングル
バンケージコイルで実施した熱暴走評価試験において、熱
暴走発生の全体像が明らかにすることができた。

Fig. 11(a) Time variations of temperatures in the coil (A).

Fig. 11(b) Time variations of temperatures in the coil (B).

Fig. 11(c) Time variations of temperatures in the coil (C).
4. 冷却板2枚の場合の熱的安定性解析

本章では、実験で行ったアルミ冷却板2枚の場合の解析を実施し、実験結果との比較検討を行った結果について記述する。参考文献1のFig. 8に示す冷却構成（冷却板2枚）での熱的安定性解析を実施した。

コイル初期温度30.4 Kで、コイルに電流を309.1 Aを通電したときの温度変化とコイル電圧を解析した結果をFig. 13に示す。Fig. 13では、通電開始1,000秒後から温度および電圧とともにdV/dt>0およびdV/dt<0の上昇曲線に転じており、熱暴走が発生している。なお、309.0 Aでは熱暴走が発生しないことを確認しているので、コイル初期温度30.4 Kでの熱暴走電流は309.1 Aである（参考文献1のTable 4に示すようにコイル初期温度30.4 Kでの熱暴走電流の実験値は307～309 Aであるので、冷却板2枚の場合も冷却板1枚の場合と同じに、熱暴走電流の実験値と解析値は良く一致することが示された。

Fig. 14には、アルミ冷却板温度30.4 K、通電電流309.1 Aの場合に、コイル内部の最高温度が45 Kに達した通電開始1,450秒後のコイル内部の温度分布を示す。アルミ冷却板1枚のFig. 12 (c)と比較すると、Fig. 14の方が、コイル径方向の温度勾配が大きい。これは、アルミ冷却板2枚の場合の方が、通電電流が高く、その結果発熱量も大きいため、短時間で発熱部は温度上昇するためであると考えられる。アルミ冷却板増加によって、熱暴走電流が増加し、熱的安定性も上昇するが、熱暴走発生時には温度上昇速度が遅いため、熱暴走発生時のコイル保護に対する対策はより重要となる。

次に、冷却板が1枚の場合と2枚の場合の解析結果を比較すると、前者の熱暴走電流が298.4 Aであるのに対し、
5. 冷却板増加の効果

実験では、冷却板 2 枚の場合までの検証であったが、前章までの実験と解析との比較により、解析の信頼性が確認できたので、本章では、さらに冷却板を増加させた場合の解析結果を示し、冷却板増加の効果について考察する。ただし、本章での解析はすべて冷却板を対称に配置した場合のものとする。

Fig. 16 に 20〜50 K での熱爆発電流値の冷却板枚数依存性を示す。なお、Fig. 16 において冷却板 8 枚とは、シングルバンケーコイルの端面全体に冷却板が敷き詰められている状態を意味する。熱爆発電流値は冷却板枚数の増加に伴って増加しているが、冷却板枚数が増えるほどその効果は小さくなる傾向が示された。ただし、アルミ冷却板温度 20 K, 30 K, 40 K および 50 K においてそれぞれ、冷却板 1 枚の場合と 8 枚の場合は熱爆発電流値は、6.7%, 8.6%, 11.5%および 13.4%増加している。特に、高温側で冷却板枚数（冷却面積）が熱爆発電流値に与える影響が大きくになっている。

Fig. 17 に、許容発熱量の温度依存性および冷却面積依存性を示す。そこで示す許容発熱量は、解析から導き出した熱爆発電流より 0.1 A 低い電流値でのフロックスフロー発熱の定常値を定義した。冷却板 1 枚の場合は、温度の増加とともに許容発熱量が減少するのに対し、冷却板 8 枚の場合は、逆に許容発熱量が増加している。冷却板 1 枚の場合は、冷却端であるアルミ冷却板からコイルまでの温度差で支配的な部分がコイル周方向の部分であるが、コイル周方向の等価熱伝導率は Fig. 4 に示すように 20 K 以上の温度領域では、温度が高いほど小さくなっている。そのため、高温度ほどコイル周方向で温度差がつきやすく、その影響で許容発熱量が高温ほど小さくなるものと考えられる。一方、冷却板 8 枚の場合は、温度差が生じる部分は、コイルとアルミ冷却板の間にあるエポキシ樹脂のみである。Fig. 4 に示すように、エポキシ樹脂の熱伝導率は、20 K から 50 K の温度領域では、温度の増加とともに急激に上昇するため、高温ほどエポキシ樹脂部分での温度差がつきにくく、その影響で許容発熱量が高温ほど大きくなくなるものと考えられる。このような、高温の方が冷却面積の増加による許容発熱量の増加率が高いため、前述のように熱爆発電流の増加率も高かったと言える。

6. 各物性値の感度分析

前章まで、実験結果と解析結果とがほぼ定量的に一致していることを示してきた。ここで、解析にさらに普遍性を持たせるためには、各物性値がそれぞれどれほど解析結果に影響を与えているのか感度分析を行う必要がある。解析結果に大きく影響を及ぼす物性値については、ひとつのコイルを設計する際の物性値を正確に測定し、逆に、解析結果に及ぼす影響が少ない物セイシー線の Lc 係数値については、本解析で用いた物性値をそのまま使用するなどの管理が必要となる。本章では、熱伝導率（本章では、Fig. 4 に示すコイル θ方向の等価熱伝導率 Lc）、比熱（Fig. 3 に示すコイルの等価比熱）、密度および n 値について、本解析で用
Fig. 18 Sensitivity analysis results of various physical values

7. まとめ

20 K～50 K の温度範囲で、作製したシングルバンケーキコイルに対して熱暴走解析を実施し、実験結果と比較した。その結果、解析結果と実験結果とは、ほぼ定常的に一致することができた。また、解析に用いた物性値の敏感度分析を実施した結果、使用する超伝導材の臨界電流値については、熱暴走電流値に及ぼす影響が極めて強く、解析には正確な I_c-B,T 特性のデータを入力しておく必要があることが明らかになった。しかしながら、他の熱伝導率、n 値、比熱については、真の値と 0.5～2 倍相違がある場合でも熱暴走電流に及ぼす影響は 2%未満と小さいことだった。解析精度を管理するための、使用材の I_c-B,T 特性を正確に評価しておくことが重要であることが明らかになった。以上より、伝導冷却高溫超伝導コイルの熱的安定性について定量的に評価可能であり、その結果を実機コイルの設計に反映することができたことが示され

参考文献

田崎賢司，猪爪英史，栗山 透，岡村哲至，林 秀美，岩熊 俊二，船木和夫：“伝導冷却高溫超伝導コイルの熱的安定性評価–熱暴走試験”，低温工学 40 (2005) 404-411
2) 内藤智之、藤代博之，池井 学，川井研一，松川倫明，能登 宏七：“酸化物高溫超伝導体の熱伝導率，および熱拡散率の同時測定”，第 40 回 1993 年春季低温工学・超伝導学会講演概要集 (1993) 222

低温工学 40 巻 10 号 2005 年