High Magnetic Field Transport Properties of NEG123 and Y123 Bulk Materials

Masafumi NAMBA*1,†, Satoshi AWAJI*1, Nobuyuki ISONO*1, Kazuo WATANABE*1, Miryala MURALIDHAR*2, Naomi KOSHIZUKA*2 and Masato MURAKAMI*2, 3

Synopsis: The bulk material comprised of (Nd, Eu, Gd)Ba$_2$Cu$_3$O$_x$ (NEG123) shows a high irreversibility field over 14 T at 77.3 K. In order to study the origin of the high irreversibility field, transport measurements of NEG123 and Y123 bulk samples were performed as functions of temperature, high magnetic field and field angle, and transport properties were compared with each other. Dip structures for the angular dependence of resistivity are observed around B//c for all samples. These results indicate that c-axis correlated disorder exists. The NEG123 bulk sample with a larger dip shows a higher irreversibility temperature. In addition, we found that the differences of the irreversibility temperature between on and 12° off the dip are scaled universally as a function of the depth of the dip for NEG123 and Y123 bulk samples. It is considered that c-axis correlated disorder is important for high irreversibility fields.

Keywords: irreversibility line, RE123, c-axis correlated disorder, flux pinning

1. はじめに

高温超伝導体において臨界電流密度や不可逆磁場などの特性向上のためには、磁束ピニングが重要である。溶融法で作製された REBa$_2$Cu$_3$O$_y$ (RE = rare-earth element) バルクでは、高温、低磁場において RE$_{1+y}$Ba$_2$Cu$_3$O$_y$ (RE = Eu, Gd) の微細な析出物が主なピニングサイトになっていると報告されている 1)。最近の研究では、これらの析出物の微細化によって 90 K 近辺でも大きな臨界電流密度が得られることも報告されている 2)。さらに、RE123 では、RE のイオン半径が Y のイオン半径に比べて大きく Ba のイオン半径に近いため、RE と Ba の置換が起こり、Ba サイトが RE によって置換された RE$_{1+y}$Ba$_2$Cu$_3$O$_y$ 相が生成される 3)。この、RE と Ba の置換したクラスター (低 Tc 相) が微細に分散し、その部分が磁場誘起型のピニングセンターとなることで、磁場での臨界電流密度が向上し、磁場の印加に伴って、ピークを示す。このピーク効果のように RE123 では微細な析出物により臨界電流密度の大幅な向上を示すことが知られているが、不可逆磁場は 10 T 程度と比較的小さいままであった 4)。しかし、RE サイトに Nd, Eu, Gd の 3 元素を用いた (Nd$_{0.33}$Eu$_{0.38}$Gd$_{0.29}$)Ba$_2$Cu$_3$O$_7$ (NEG123) に 5 mol% (Nd$_{0.33}$Eu$_{0.38}$Gd$_{0.33}$)Ba$_2$Cu$_3$O$_5$ (NEG211) を添加したバルクでは、77.3 K, B//c における不可逆磁場が 14 T 以上を示すことが発見された 5)。Muralidhar らによると、高い不可逆磁場を示す試料には nanolamella 構造と呼ばれる微細構造が不可逆磁場の原因となっていると考えられている。この nanolamella はナノスケールの構造で、RE と Ba の置換したクラスターが c 面内で規則正しく並んだものと考えられている。これまでのわれわれの研究では、NEG123 において c 軸相関ビンクが高不可逆磁場に大きな寄与をしていることがわかった 6)。さらに、これらの試料では、柱状欠陥や変状欠陥などの様々な c 軸相関ビンクがあるときにみられる磁束状態である Bose glass 状態が実現していることがわかった 7)。この論文では、c 軸相関ビンクと不可逆磁場の関
連を調べるために、NEG123 だけでなく Y123 も含めたいくつかの試料について、高輝度帯送特性を磁場、温度、
磁場印加角度の関係として詳細に調べ、不可逆磁場の決定
因子について議論する。

2. 実験方法

試料は、溶融法で作製した NEG123 と Y123 パルクである。
NEG123 パルクは OCMG 法（ Oxygen Control Melt
Growth 法：酸素制御溶融法）で作製した。添加した 211
相の異なる 3 種類の (Nd0.33Eu0.38Gd0.28)Ba2Cu3Oy
（NEG123）パルクである8)。これらはそれぞれ、
NEG211 を 3 mol% と 40 mol%，および Gd211 を 5 mol% 添加
したものである。測定試料は切り出した後に酸素アニーラ
ルを行った。YBa2Cu3O7 （Y123）パルクは、Ag2O を 10 wt%，
白金を 0.5 mol% に、Y2BaCuO11を 33 mol% 添加し,
空気中における溶融法によって作製した。この試料から，
電気抵抗測定用に約 30mm x 0.8mm x 0.5mm の、磁化測定用に
約 10mm x 0.5mm x 0.8mm の 3 倍程度で厚さ方向を c 軸に切り出し,
600℃, 1500℃, 1300℃ 及び 600℃, 1500℃, 1300℃ で酸素ア
ニールを行い Y123-(i)）、さらに 300℃-720℃ で酸素ア
ニールを行った Y123-(ii)）。これら 5 種類の試料の臨界
電流密度は VSM および SQUID による磁化測定の結果よ
り Bean モデルによって見積もった。電気抵抗率の温度,
磁場、磁場の角度依存性は直流 4 軸法で測定した。サン
プルは Cernox 抵抗温度計、ヒーターとキャパシタンス温
度計を取り付けた回転ホルダーに固定した。試料の温度制
御は He ガスフロークライオスタットとサンプルホルダー
を取り付けたヒーターとキャパシタンス温度計の両方を用
いて行なった。強磁場発生には、金属材料研究所附属強
磁場超伝導材料研究センターに設置されている 20 T 超伝導マ
グネット (20T – SM) を使用した。印加磁場は最大 17 T
で、磁場の印加角度は B/c を θ = 0° と定義した。抵抗測定
では電流密度 10 A/cm²相当の電流を流した。

3. 結果および考察

Fig. 1 に、磁化ヒステリシスから求めた臨界電流密度
(Jc) を示す。Jc の値は、5 mol%Gd211 添加 NEG123 が最も
高く、不可逆磁場、Jc の値が約半分である
3 mol%NEG211 添加 NEG123 が最も高くなっていた。
したがって、Jc の高い試料で高い不可逆磁場が得られるとは限
らないことを示している。Fig. 1 に現れた NEG123 のピー
ク効果は、主に RE と Ba の置換したクラスターによるも
のと考えられる。このクラスターを RE211 は、いずれも
ランダムにとして働くが、磁束融解の立場では、ランダ
ムビンによる向上は磁束系の熱的な摂らぎの効果を増大さ
せるため、不可逆磁場を下げてしまうと考えられている。また
Y123 は長時間酸素アニールにより Jc、不可逆磁場ともに
向上した。

Fig. 2 に、77.3 K における Y123 および NEG123 の代表
的な電気抵抗率の角度依存性を示す。超伝導の異方性に起
因して有效なモデルで描写される角度依存性のほかに、
両方の試料で B/c にディップが現れている。測定した他
の試料もすべて同様なディップを示した。このディップは
c 軸方向に相関の強い磁束ビニングの存在を示唆するも
のである。また、このディップは磁場や温度の増加に伴っ
て減少する。このディップについての詳細を得るために、
ディップの onset と offset の角度である 0 度と 12 度における電気抵抗率の温度依存性を Fig. 3 に示す。

全ての試料において、印加電場の増加とともに常伝導の一超伝導転移がブロードになり、抵抗がゼロになる温度も低温側にシフトしている。また高温側ではθ = 0°とθ = 12°の電気抵抗率がほぼ重なっており、この領域ではディップがなくなっていることを示している。しかし、ある温度以下でθ = 12°とθ = 0°の電気抵抗率に差が出始め、θ = 0°の電気抵抗率が急激に下がることがわかる。2 つの角度における電気抵抗率の差をとると、Fig. 4 に示したように、ある温度以下で差が大きく、ピークを示した後に減少する。

ここで、Fig. 4 に示すように、θ = 12°とθ = 0°の電気抵抗率に差が出始める (ディップが現れ始める) 温度を T_k と定義した。したがって、T_k は c 軸軸関ビンが働き始める onset 温度と考えることができる。次に、電気抵抗率基準として ρ = 10−4 Ω cm で求めた温度を不可逆温度 T_i とする。ここで用いた不可逆電場の決定基準は 1 μV/cm で決定した臨界電流密度が 10 A/cm² となる電場と等価である。全ての試料のθ = 0°とθ = 12°における不還元曲線を Fig. 5 に示す。T_i の違いによる影響を排除するために横軸は T_i で規格化した。θ = 0°(B/c) において、Y123 では、酸素アニールを長時間行った Y123-(2) の試料で高い不還元磁場が得られている。NEG123 に関しては、3 mol% NEG211 と 5 mol% Gd211 は同程度であり、40 mol% NEG211 が一番低くなっている。しかし、全体として Y123 の不可逆電場は T_i で規格化しても NEG123 よりも低調電場側に位置していることがわかる。液体内素温度 (77.3 K) においては、Y123 の B/c における不可逆電場は NEG123 に比べて、3-5 T 低いことが分かった。一方
で，$\theta = 12^\circ$ は Fig. 2 から分かるように c 軸相関ビンの影響がほとんど反映されないと考えられる。従って，この不可逆磁場は c 軸相関ビン以外のランダムビンの影響によって決まっていると考えられる。c 軸相関ビンが働いていない 12° における不可逆磁場も定性的には B/c と同様な振る舞いを示している。しかし，詳細をみると，5mol%Gd211 の不可逆磁場は，$\theta = 12^\circ$ においては 3mol%NEG211 よりも低くなっているにもかかわらず，B/c の不可逆磁場を同程度となっている。これは両者がランダムビンによる影響は $5mol%Gd211$ で低いか c 軸相関ビンの寄与は $5mol%Gd211$ の方が大きいためと考えられる。この様に，$\theta = 0^\circ$ と 12° の不可逆磁場を比較することによって，c 軸相関ビンの影響，ランダムビンの影響を分離することができる。

Fig. 6 は T_k/T_c および各試料の磁場依存性を示している。この図から，磁場の増加とともに，各試料の T_k/T_c は低下する。$3mol%NEG$，$5mol%Gd$，$40mol%NEG$，$Y123-(1)$，$Y123-(2)$ などの試料において，T_k/T_c は磁場の増加に伴って減少する傾向が見られる。これは，c 軸相関ビンの磁場依存性が大きく影響していることを示している。

次に，ディップの大きさと不可逆磁場の関係を考慮するため，Fig. 4 に示した ϕ を ϕ_0 の最大値を $\Delta \rho$ として，これがディップの大きいと定義する。ただし常伝導抵抗の寄与を排除するために $T = 100 K$ の抵抗値を常伝導抵抗とし

Fig. 7 は T_k/T_c および各試料の磁場依存性を示している。この図から，磁場の増加とともに，各試料の T_k/T_c は低下する。$3mol%NEG$，$5mol%Gd$，$40mol%NEG$，$Y123-(1)$，$Y123-(2)$ などの試料において，T_k/T_c は磁場の増加に伴って減少する傾向が見られる。これは，c 軸相関ビンの磁場依存性が大きく影響していることを示している。
Fig. 7 と 5mol%Gd211 では磁場に依存性は、5mol%Gd211 の磁場依存性は、Y123 と 40mol%NEG211 では、①を示す。このことは高不変磁場を示す試料では、より

高磁場まで c 軸相関ビンが有効であることを示唆してい

t、これが高い不変磁場の原因の一つと考えることができる。次に、\(\theta = 12° \) と \(\theta = 0° \) における不変温度 (T) の差

（\(\Delta T = T(0°) - T(12°) \)）を不変温度の向上率として定義する。\(\Delta T/T(12°) \)の磁

場依存性を Fig. 8 に示す。\(\Delta T/T(12°) \)の磁場依存性は、3mol%NEG211 と 5mol%Gd211 に関しては増加に伴って

単調に増加しているが、Y123 と 40mol%NEG211 に関しては約 7 T 以上の高磁場で飽和することがわかった。こ

れらの振る舞いの違いは、Fig. 7 で得られた \(\Delta T/T(100°) \) の磁場依存性の違いと密接関係がある。そこで、

\(\Delta T/T(100°) \) と \(\Delta T/T(12°) \) の結果をふまえると、40mol%NEG211、Y123-(1)、Y123-(2) の他ととは異なる

直線上にのっているようにみえる。すなわち、3mol%NEG211 と 5mol%Gd211 の試料では不変磁場が磁

場に対しても単調に増加しているが、Y123 と 40mol%NEG211 では不変磁場の向上率が磁場で飽和しているためと考えられる。これまでの報告によると、磁

場の数が c 軸相関ビンの密度と同じになるマッチング磁場

近傍やその 1/3 で、不変磁場に異常が現れると報告されて

いる [12]。今回の場合もマッチング磁場が関係している可

能性がある。ここで、c 軸相関ビンの候補として 123 系で

は双晶界面が考えられる。双晶界面は NEG123 でも Y123

でも存在すると考えられるが、今回測定した試料では、異

なる c 軸相関ビンの振る舞いを示した。これは NEG123 で

は 211 相の添加量が少ない試料において nanolamella 構造の存

在が確認されており、この nanolamella 構造が双晶界面と

は違う c 軸相関ビンの候補と考えられる [3]。しかし、40mol%NEG211 には nanolamella 構造の存在が確認されて

いないことから、40mol%NEG211 の試料は Y123 に近い試

料と考えられる。

4. まとめ

アニュール条件の違い 2 種類の Y123 と NEG211 が 3 mol% および 40 mol%、および Gd211 が 5 mol%添加した 3 種類

の NEG213 のパルクについて磁場輸送特性を調べた。全

ての試料で、電気抵抗率の角度依存性にディップがみられ

c 軸相関ビンの存在を確認した。さらに、電気抵抗率の

温度、磁場依存性の測定より、c 軸相関ビンの強さ (\(\Delta T/T(100°) \)) と不変磁場の向上率 (\(\Delta T/T(12°) \)) の関係
は、低磁場では RE サイトの種類に関わらず相関が見られなかったが、高磁場では 211 の添加量の少ない NEG123 でその相関から外れるという異なった振る舞いを示すことが分かった。さらに、不可逆磁場の向上のためにはキャリア濃度に起因した異方性の低下によるバックグラウンド向上の他に、c 軸相関ビンの種類に関わらず、その c 軸相関ビンの存在とその強さが重要であることが分かった。

参考文献

3) S. Ohshima and T. Wakiyama: “Superconducting and Structural Properties of the New Ba_{x-1}LnxCuO_{y} Compound System (Ln=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, and Yb),” Jpn. J. Appl. Phys. 26 (1987) 815-817

10) T. Naito, T. Nishizaki and N. Kobayashi: “Phase transition in vortex-state of untwinned YBa\textsubscript{2}CuO\textsubscript{4-x} single crystals at high magnetic fields up to 260 kOe,” Physica C 293 (1997) 186-190

難波雅史 昭和 40 年 7 月 15 日生。昭和 63 年広島大学理学部物理学科卒業。同年同大学院工学研究科応用物理科学研究科博士課程修了。同年 4 月より東北大学金属材料研究所に勤務。同研究所助手を経て、現在同助教授。主に超伝導材料の基礎物性研究および強磁場マグネットの開発に従事。低温工学学会、応用物理学会、日本金属学会、応用磁気学会会員、工学博士。

高野伸之 1979 年 8 月生。2003 年東北大学工学部応用物理学科卒業。2005 年同大学院工学研究科応用物理学科博士課程前期修了。同年 4 月より (株)シャープへ勤務。

渡辺和雄 昭和 25 年 5 月 17 日生。昭和 50 年東北大学理学部物理学科卒業。昭和 52 年同大学同大学院物理科学研究科博士課程修了。真空冶金（金）勤務。昭和 56 年 4 月より東北大学金属材料研究所助手、講師、助教授を経て平成 13 年 4 月から同研究所教授。低温工学学会、日本金属学会、応用物理学会、応用磁気学会会員、工学博士。

Miyra MURALIDHAR 1963年 11月 26日、インド、ヒンドゥー教。1992年Osmania 大学にて理学博士課程修了。Osmania 大学の助手兼非常勤講師を経て、1996年に来日。超電導工学研究所在勤研究者に勤務。2005年より超電導工学研究所在籍。研究主幹。主に超電導電流バルク材料の研究に従事。

篠塚直己 昭和 16年 9月 27日生。昭和 45年京都大学大学院理学研究科博士課程進学。同年工業技術院電気試験所（現産業技術総合研究所）入所。昭和 63年より（財）国際超電導産業技術研究センター・超電導工学研究所副所所長。平成 13年より盛岡超電導技術応用研究所所長代理を経て、現在超電導工学研究所所長研究員（非常勤）。主に磁性材料、超電導材料の研究に従事。低温工学学会、日本応用磁気学会、応用物理学会会員、理学博士。

村 上 靖人 1955年 2月生。1979年東京大学工学部金属材料学科卒業。1984年東京大学大学院工学研究科博士課程修了。同年新日本製鐵（株）第一技術研究所、1989年超電導工学研究所、2003年より芝浦工業大学工学部材料工学科教授、低温工学部会員。工学博士。